BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 34605973)

  • 1. Modifications of the human tRNA anticodon loop and their associations with genetic diseases.
    Zhou JB; Wang ED; Zhou XL
    Cell Mol Life Sci; 2021 Dec; 78(23):7087-7105. PubMed ID: 34605973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Posttranscriptional modifications at the 37th position in the anticodon stem-loop of tRNA: structural insights from MD simulations.
    Seelam Prabhakar P; Takyi NA; Wetmore SD
    RNA; 2021 Feb; 27(2):202-220. PubMed ID: 33214333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Importance of Being Modified: The Role of RNA Modifications in Translational Fidelity.
    Agris PF; Narendran A; Sarachan K; Väre VYP; Eruysal E
    Enzymes; 2017; 41():1-50. PubMed ID: 28601219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of protein aggregation and starvation response by tRNA modification defects.
    Klassen R; Bruch A; Schaffrath R
    Curr Genet; 2020 Dec; 66(6):1053-1057. PubMed ID: 32860511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actions of the anticodon arm in translation on the phenotypes of RNA mutants.
    Yarus M; Cline SW; Wier P; Breeden L; Thompson RC
    J Mol Biol; 1986 Nov; 192(2):235-55. PubMed ID: 2435916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural effects of hypermodified nucleosides in the Escherichia coli and human tRNALys anticodon loop: the effect of nucleosides s2U, mcm5U, mcm5s2U, mnm5s2U, t6A, and ms2t6A.
    Durant PC; Bajji AC; Sundaram M; Kumar RK; Davis DR
    Biochemistry; 2005 Jun; 44(22):8078-89. PubMed ID: 15924427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frameshift suppressor mutations outside the anticodon in yeast proline tRNAs containing an intervening sequence.
    Cummins CM; Culbertson MR; Knapp G
    Mol Cell Biol; 1985 Jul; 5(7):1760-71. PubMed ID: 3894935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified uridines with C5-methylene substituents at the first position of the tRNA anticodon stabilize U.G wobble pairing during decoding.
    Kurata S; Weixlbaumer A; Ohtsuki T; Shimazaki T; Wada T; Kirino Y; Takai K; Watanabe K; Ramakrishnan V; Suzuki T
    J Biol Chem; 2008 Jul; 283(27):18801-11. PubMed ID: 18456657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial wobble modifications of NNA-decoding tRNAs.
    Nilsson EM; Alexander RW
    IUBMB Life; 2019 Aug; 71(8):1158-1166. PubMed ID: 31283100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Codon-specific effects of tRNA anticodon loop modifications on translational misreading errors in the yeast Saccharomyces cerevisiae.
    Joshi K; Bhatt MJ; Farabaugh PJ
    Nucleic Acids Res; 2018 Nov; 46(19):10331-10339. PubMed ID: 30060218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. tRNA's wobble decoding of the genome: 40 years of modification.
    Agris PF; Vendeix FA; Graham WD
    J Mol Biol; 2007 Feb; 366(1):1-13. PubMed ID: 17187822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases.
    Meinnel T; Mechulam Y; Fayat G; Blanquet S
    Nucleic Acids Res; 1992 Sep; 20(18):4741-6. PubMed ID: 1408786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution structure of psi32-modified anticodon stem-loop of Escherichia coli tRNAPhe.
    Cabello-Villegas J; Nikonowicz EP
    Nucleic Acids Res; 2005; 33(22):6961-71. PubMed ID: 16377777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The anticodon contains a major element of the identity of arginine transfer RNAs.
    Schulman LH; Pelka H
    Science; 1989 Dec; 246(4937):1595-7. PubMed ID: 2688091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and mechanistic basis for enhanced translational efficiency by 2-thiouridine at the tRNA anticodon wobble position.
    Rodriguez-Hernandez A; Spears JL; Gaston KW; Limbach PA; Gamper H; Hou YM; Kaiser R; Agris PF; Perona JJ
    J Mol Biol; 2013 Oct; 425(20):3888-906. PubMed ID: 23727144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Coping Mechanisms: Reprogramming tRNAs To Regulate Codon-Biased Translation of Stress Response Proteins.
    Mitchener MM; Begley TJ; Dedon PC
    Acc Chem Res; 2023 Dec; 56(23):3504-3514. PubMed ID: 37992267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe).
    Cabello-Villegas J; Winkler ME; Nikonowicz EP
    J Mol Biol; 2002 Jun; 319(5):1015-34. PubMed ID: 12079344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of tRNA modification on translational accuracy depend on intrinsic codon-anticodon strength.
    Manickam N; Joshi K; Bhatt MJ; Farabaugh PJ
    Nucleic Acids Res; 2016 Feb; 44(4):1871-81. PubMed ID: 26704976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and codon reading properties of 5-cyanomethyl uridine, a new modified nucleoside found in the anticodon wobble position of mutant haloarchaeal isoleucine tRNAs.
    Mandal D; Köhrer C; Su D; Babu IR; Chan CT; Liu Y; Söll D; Blum P; Kuwahara M; Dedon PC; Rajbhandary UL
    RNA; 2014 Feb; 20(2):177-88. PubMed ID: 24344322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.