These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34606117)

  • 1. Three-dimensional membranes for artificial lungs: Comparison of flow-induced hemolysis.
    Hesselmann F; Arnemann D; Bongartz P; Wessling M; Cornelissen C; Schmitz-Rode T; Steinseifer U; Jansen SV; Arens J
    Artif Organs; 2022 Mar; 46(3):412-426. PubMed ID: 34606117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Hollow Fiber Membrane Oscillation on an Artificial Lung.
    Orizondo RA; Gino G; Sultzbach G; Madhani SP; Frankowski BJ; Federspiel WJ
    Ann Biomed Eng; 2018 May; 46(5):762-771. PubMed ID: 29464460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel method for measuring hollow fiber membrane permeability in a gas-liquid system.
    Lund LW; Federspiel WJ; Walters FR; Hattler BG
    ASAIO J; 1996; 42(5):M446-51. PubMed ID: 8944921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional finite element model for oxygen transfer in cross-flow hollow fiber membrane artificial lungs.
    Dierickx PW; de Wachter DS; Verdonck PR
    Int J Artif Organs; 2001 Sep; 24(9):628-35. PubMed ID: 11693419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TPMS-based membrane lung with locally-modified permeabilities for optimal flow distribution.
    Hesselmann F; Halwes M; Bongartz P; Wessling M; Cornelissen C; Schmitz-Rode T; Steinseifer U; Jansen SV; Arens J
    Sci Rep; 2022 May; 12(1):7160. PubMed ID: 35504939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of CO2 exchange with carbonic anhydrase immobilized on fiber membranes in artificial lungs.
    Arazawa DT; Kimmel JD; Federspiel WJ
    J Mater Sci Mater Med; 2015 Jun; 26(6):193. PubMed ID: 26032115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemocompatibility assessment of carbonic anhydrase modified hollow fiber membranes for artificial lungs.
    Oh HI; Ye SH; Johnson CA; Woolley JR; Federspiel WJ; Wagner WR
    Artif Organs; 2010 May; 34(5):439-42. PubMed ID: 20633159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The anisotropic elastic behavior of the widely-used triply-periodic minimal surface based scaffolds.
    Lu Y; Zhao W; Cui Z; Zhu H; Wu C
    J Mech Behav Biomed Mater; 2019 Nov; 99():56-65. PubMed ID: 31344523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of plasma resistant hollow fiber membranes for artificial lungs.
    Eash HJ; Jones HM; Hattler BG; Federspiel WJ
    ASAIO J; 2004; 50(5):491-7. PubMed ID: 15497391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Morphology, Compressive Behavior, and Energy Absorption of Graded Triply Periodic Minimal Surface 316L Steel Cellular Structures Fabricated by Laser Powder Bed Fusion.
    Ravichander BB; Jagdale SH; Kumar G
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive Conformal Cooling of Injection Molds Using Additively Manufactured TPMS Structures.
    Oh SH; Ha JW; Park K
    Polymers (Basel); 2022 Jan; 14(1):. PubMed ID: 35012204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new multilayered composite hollow fiber membrane for artificial lung.
    Kamo J; Uchida M; Hirai T; Yosida H; Kamada K; Takemura T
    Artif Organs; 1990 Oct; 14(5):369-72. PubMed ID: 2241604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hollow fiber membrane modification with functional zwitterionic macromolecules for improved thromboresistance in artificial lungs.
    Ye SH; Arazawa DT; Zhu Y; Shankarraman V; Malkin AD; Kimmel JD; Gamble LJ; Ishihara K; Federspiel WJ; Wagner WR
    Langmuir; 2015 Mar; 31(8):2463-71. PubMed ID: 25669307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical model for the prediction of permeability of triply periodic minimal surfaces.
    Asbai-Ghoudan R; Ruiz de Galarreta S; Rodriguez-Florez N
    J Mech Behav Biomed Mater; 2021 Dec; 124():104804. PubMed ID: 34481309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical Properties and Energy Absorption Abilities of Diamond TPMS Cylindrical Structures Fabricated by Selective Laser Melting with 316L Stainless Steel.
    Laskowska D; Szatkiewicz T; Bałasz B; Mitura K
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-assisted design of an implantable, intrathoracic artificial lung.
    Vaslef SN; Mockros LF; Cook KE; Leonard RJ; Sung JC; Anderson RW
    Artif Organs; 1994 Nov; 18(11):813-7. PubMed ID: 7864729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Branched vascular network architecture: a new approach to lung assist device technology.
    Hoganson DM; Anderson JL; Weinberg EF; Swart E; Orrick BK; Borenstein JT; Vacanti JP
    J Thorac Cardiovasc Surg; 2010 Nov; 140(5):990-5. PubMed ID: 20591445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved hemodialysis with hemocompatible polyethersulfone hollow fiber membranes: In vitro performance.
    Verma SK; Modi A; Singh AK; Teotia R; Bellare J
    J Biomed Mater Res B Appl Biomater; 2018 Apr; 106(3):1286-1298. PubMed ID: 28636168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving Triply Periodic Minimal Surface Thin-Walled Structures by Micro Laser Powder Bed Fusion Process.
    Qu S; Ding J; Song X
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34208614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design procedure for triply periodic minimal surface based biomimetic scaffolds.
    Günther F; Wagner M; Pilz S; Gebert A; Zimmermann M
    J Mech Behav Biomed Mater; 2022 Feb; 126():104871. PubMed ID: 34654652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.