These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 346064)

  • 21. Respiration-coupled calcium transport by membrane vesicles from Azotobacter vinelandii.
    Barnes EM; Roberts RR; Bhattacharyya P
    Membr Biochem; 1978; 1(1-2):73-88. PubMed ID: 116111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli.
    Berger EA
    Proc Natl Acad Sci U S A; 1973 May; 70(5):1514-8. PubMed ID: 4268097
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two systems for the uptake of phosphate in Escherichia coli.
    Rosenberg H; Gerdes RG; Chegwidden K
    J Bacteriol; 1977 Aug; 131(2):505-11. PubMed ID: 328484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional mosaicism of membrane proteins in vesicles of Escherichia coli.
    Adler LW; Rosen BP
    J Bacteriol; 1977 Feb; 129(2):959-66. PubMed ID: 190212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proton-linked D-xylose transport in Escherichia coli.
    Lam VM; Daruwalla KR; Henderson PJ; Jones-Mortimer MC
    J Bacteriol; 1980 Jul; 143(1):396-402. PubMed ID: 6995439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calcium transport in membrane vesicles of Bacillus subtilis.
    de Vrij W; Bulthuis R; Postma E; Konings WN
    J Bacteriol; 1985 Dec; 164(3):1294-300. PubMed ID: 3934142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The oxidative activities of membrane vesicles from Bacillus caldolyticus. Energy-dependence of succinate oxidation.
    Dawson AG; Chappell JB
    Biochem J; 1978 Feb; 170(2):395-405. PubMed ID: 205211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Active uptake of tetracycline by membrane vesicles from susceptible Escherichia coli.
    McMurry LM; Cullinane JC; Petrucci RE; Levy SB
    Antimicrob Agents Chemother; 1981 Sep; 20(3):307-13. PubMed ID: 7030198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sodium-stimulated glutamate uptake in membrane vesicles of Escherichia coli: the role of ion gradients.
    MacDonald RE; Lanyi JK; Greene RV
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3167-70. PubMed ID: 20621
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidative phosphorylation in right-side-out membrane vesicles from Escherichia coli.
    Tsuchiya T
    J Biol Chem; 1976 Sep; 251(17):5315-20. PubMed ID: 8460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energy coupling to net K+ transport in Escherichia coli K-12.
    Rhoads DB; Epstein W
    J Biol Chem; 1977 Feb; 252(4):1394-401. PubMed ID: 320207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of glucose and maltose transport in plasma-membrane vesicles from the yeast Candida utilis.
    van den Broek PJ; van Gompel AE; Luttik MA; Pronk JT; van Leeuwen CC
    Biochem J; 1997 Jan; 321 ( Pt 2)(Pt 2):487-95. PubMed ID: 9020885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energization of the transport systems for arabinose and comparison with galactose transport in Escherichia coli.
    Daruwalla KR; Paxton AT; Henderson PJ
    Biochem J; 1981 Dec; 200(3):611-27. PubMed ID: 6282256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generation of an electrochemical proton gradient by lactate efflux in membrane vesicles of Escherichia coli.
    Ten Brink B; Konings WN
    Eur J Biochem; 1980 Oct; 111(1):59-66. PubMed ID: 7002561
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coupling of energy to active transport of amino acids in Escherichia coli.
    Simoni RD; Shallenberger MK
    Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2663-7. PubMed ID: 4341704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport of sugars and amino acids in bacteria. XIII. Mechanism of selective inhibition of the active transport reactions for proline, leucine, and succinate by zinc ions.
    Anraku Y; Goto F; Kin E
    J Biochem; 1975 Jul; 78(1):149-57. PubMed ID: 1104598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uncoupler and anaerobic resistant transport of phosphate in Escherichia coli.
    Rae AS; Strickland KP
    Biochem Biophys Res Commun; 1975 Feb; 62(3):568-76. PubMed ID: 1091263
    [No Abstract]   [Full Text] [Related]  

  • 38. Apparently unidirectional polyamine transport by proton motive force in polyamine-deficient Escherichia coli.
    Kashiwagi K; Kobayashi H; Igarashi K
    J Bacteriol; 1986 Mar; 165(3):972-7. PubMed ID: 3005244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proline transport activity in Escherichia coli membrane vesicles of different buoyant densities.
    van Heerikhuizen H; Boekhout M; Witholt B
    Biochim Biophys Acta; 1977 Nov; 470(3):453-64. PubMed ID: 336091
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proton electrochemical gradient and phosphate potential in mitochondria.
    Azzone GF; Pozzan T; Massari S
    Biochim Biophys Acta; 1978 Feb; 501(2):307-16. PubMed ID: 620018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.