BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 34606844)

  • 1. Spirulina platensis mediated biosynthesis of Cuo Nps and photocatalytic degradation of toxic azo dye Congo red and kinetic studies.
    Alsamhary K; Al-Enazi NM; Alhomaidi E; Alwakeel S
    Environ Res; 2022 May; 207():112172. PubMed ID: 34606844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Eco-Friendly Synthesis Approach for Enhanced Photocatalytic and Antibacterial Properties of Copper Oxide Nanoparticles Using
    Khandelwal M; Choudhary S; Harish ; Kumawat A; Misra KP; Vyas Y; Singh B; Rathore DS; Soni K; Bagaria A; Khangarot RK
    Int J Nanomedicine; 2024; 19():4137-4162. PubMed ID: 38756417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange.
    Umamaheswari C; Lakshmanan A; Nagarajan NS
    J Photochem Photobiol B; 2018 Jan; 178():33-39. PubMed ID: 29101871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalysis and adsorption kinetics of azo dyes by nanoparticles of nickel oxide and copper oxide and their nanocomposite in an aqueous medium.
    Ahsan H; Shahid M; Imran M; Mahmood F; Siddique MH; Ali HM; Niazi MBK; Hussain S; Shahbaz M; Ayyub M; Shahzad T
    PeerJ; 2022; 10():e14358. PubMed ID: 36405015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy.
    Díaz-Visurraga J; Daza C; Pozo C; Becerra A; von Plessing C; García A
    Int J Nanomedicine; 2012; 7():3597-612. PubMed ID: 22848180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benign-by-design plant extract-mediated preparation of copper oxide nanoparticles for environmentally related applications.
    Ahmad A; Khan M; Osman SM; Haassan AM; Javed MH; Ahmad A; Rauf A; Luque R
    Environ Res; 2024 Apr; 247():118048. PubMed ID: 38160981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro analysis of green synthesized CuO nanoparticles using Tanacetum parthenium extract for multifunctional applications.
    Ranjbar M; Khakdan F; Mukherjee A
    Environ Sci Pollut Res Int; 2023 May; 30(21):60180-60195. PubMed ID: 37017848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic degradation of Congo red using Carissa edulis extract capped zinc oxide nanoparticles.
    Fowsiya J; Madhumitha G; Al-Dhabi NA; Arasu MV
    J Photochem Photobiol B; 2016 Sep; 162():395-401. PubMed ID: 27434698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel green strategy for CuO-ZnO-C nanocomposites fabrication using marigold (Tagetes spp.) flower petals extract with and without CTAB treatment for adsorption of Cr(VI) and Congo red dye.
    Prajapati AK; Mondal MK
    J Environ Manage; 2021 Jul; 290():112615. PubMed ID: 33906117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of silver and copper nanoparticle using
    Doman KM; Gharieb MM; Abd El-Monem AM; Morsi HH
    Int J Environ Health Res; 2024 Feb; 34(2):661-673. PubMed ID: 36603148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpinia officinarum mediated copper oxide nanoparticles: synthesis and its antifungal activity against Colletotrichum gloeosporioides.
    Hu C; Zhu W; Lu Y; Ren Y; Gu J; Song Y; He J
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):28818-28829. PubMed ID: 36401698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eco-biocompatibility of chitosan coated biosynthesized copper oxide nanocomposite for enhanced industrial (Azo) dye removal from aqueous solution and antibacterial properties.
    Sathiyavimal S; Vasantharaj S; Kaliannan T; Pugazhendhi A
    Carbohydr Polym; 2020 Aug; 241():116243. PubMed ID: 32507166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reductive-degradation of carcinogenic azo dyes using Anacardium occidentale testa derived silver nanoparticles.
    Edison TNJI; Atchudan R; Sethuraman MG; Lee YR
    J Photochem Photobiol B; 2016 Sep; 162():604-610. PubMed ID: 27479841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green synthesis of copper oxide and manganese oxide nanoparticles from watermelon seed shell extract for enhanced photocatalytic reduction of methylene blue.
    Ekinci A; Kutluay S; Şahin Ö; Baytar O
    Int J Phytoremediation; 2023; 25(6):789-798. PubMed ID: 35976777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green synthesis of copper oxide nanoparticles and its efficiency in degradation of rifampicin antibiotic.
    Nzilu DM; Madivoli ES; Makhanu DS; Wanakai SI; Kiprono GK; Kareru PG
    Sci Rep; 2023 Aug; 13(1):14030. PubMed ID: 37640783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-functional copper oxide nanoparticles synthesized using
    Geremew A; Palmer L; Johnson A; Reeves S; Brooks N; Carson L
    Heliyon; 2024 May; 10(9):e30178. PubMed ID: 38726176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications.
    Hassan SE; Fouda A; Radwan AA; Salem SS; Barghoth MG; Awad MA; Abdo AM; El-Gamal MS
    J Biol Inorg Chem; 2019 May; 24(3):377-393. PubMed ID: 30915551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green synthesis of highly efficient and stable copper oxide nanoparticles using an aqueous seed extract of Moringa stenopetala for sunlight-assisted catalytic degradation of Congo red and alizarin red s.
    Aaga GF; Anshebo ST
    Heliyon; 2023 May; 9(5):e16067. PubMed ID: 37215876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EPS-mediated biosynthesis of nanoparticles by Bacillus stratosphericus A07, their characterization and potential application in azo dye degradation.
    Anil A; Sanjeev KG; Kamarudheen N; Sebastian PM; Rao KVB
    Arch Microbiol; 2023 Jan; 205(2):72. PubMed ID: 36693945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biologically synthesized copper oxide nanoparticles enhanced intracellular damage in ciprofloxacin resistant ESBL producing bacteria.
    Rajivgandhi G; Maruthupandy M; Muneeswaran T; Ramachandran G; Manoharan N; Quero F; Anand M; Song JM
    Microb Pathog; 2019 Feb; 127():267-276. PubMed ID: 30550842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.