These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 34606844)
1. Spirulina platensis mediated biosynthesis of Cuo Nps and photocatalytic degradation of toxic azo dye Congo red and kinetic studies. Alsamhary K; Al-Enazi NM; Alhomaidi E; Alwakeel S Environ Res; 2022 May; 207():112172. PubMed ID: 34606844 [TBL] [Abstract][Full Text] [Related]
2. An Eco-Friendly Synthesis Approach for Enhanced Photocatalytic and Antibacterial Properties of Copper Oxide Nanoparticles Using Khandelwal M; Choudhary S; Harish ; Kumawat A; Misra KP; Vyas Y; Singh B; Rathore DS; Soni K; Bagaria A; Khangarot RK Int J Nanomedicine; 2024; 19():4137-4162. PubMed ID: 38756417 [TBL] [Abstract][Full Text] [Related]
3. Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange. Umamaheswari C; Lakshmanan A; Nagarajan NS J Photochem Photobiol B; 2018 Jan; 178():33-39. PubMed ID: 29101871 [TBL] [Abstract][Full Text] [Related]
4. Photocatalysis and adsorption kinetics of azo dyes by nanoparticles of nickel oxide and copper oxide and their nanocomposite in an aqueous medium. Ahsan H; Shahid M; Imran M; Mahmood F; Siddique MH; Ali HM; Niazi MBK; Hussain S; Shahbaz M; Ayyub M; Shahzad T PeerJ; 2022; 10():e14358. PubMed ID: 36405015 [TBL] [Abstract][Full Text] [Related]
5. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy. Díaz-Visurraga J; Daza C; Pozo C; Becerra A; von Plessing C; García A Int J Nanomedicine; 2012; 7():3597-612. PubMed ID: 22848180 [TBL] [Abstract][Full Text] [Related]
6. Benign-by-design plant extract-mediated preparation of copper oxide nanoparticles for environmentally related applications. Ahmad A; Khan M; Osman SM; Haassan AM; Javed MH; Ahmad A; Rauf A; Luque R Environ Res; 2024 Apr; 247():118048. PubMed ID: 38160981 [TBL] [Abstract][Full Text] [Related]
7. In vitro analysis of green synthesized CuO nanoparticles using Tanacetum parthenium extract for multifunctional applications. Ranjbar M; Khakdan F; Mukherjee A Environ Sci Pollut Res Int; 2023 May; 30(21):60180-60195. PubMed ID: 37017848 [TBL] [Abstract][Full Text] [Related]
9. Novel green strategy for CuO-ZnO-C nanocomposites fabrication using marigold (Tagetes spp.) flower petals extract with and without CTAB treatment for adsorption of Cr(VI) and Congo red dye. Prajapati AK; Mondal MK J Environ Manage; 2021 Jul; 290():112615. PubMed ID: 33906117 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of silver and copper nanoparticle using Doman KM; Gharieb MM; Abd El-Monem AM; Morsi HH Int J Environ Health Res; 2024 Feb; 34(2):661-673. PubMed ID: 36603148 [TBL] [Abstract][Full Text] [Related]
11. Alpinia officinarum mediated copper oxide nanoparticles: synthesis and its antifungal activity against Colletotrichum gloeosporioides. Hu C; Zhu W; Lu Y; Ren Y; Gu J; Song Y; He J Environ Sci Pollut Res Int; 2023 Mar; 30(11):28818-28829. PubMed ID: 36401698 [TBL] [Abstract][Full Text] [Related]
12. Eco-biocompatibility of chitosan coated biosynthesized copper oxide nanocomposite for enhanced industrial (Azo) dye removal from aqueous solution and antibacterial properties. Sathiyavimal S; Vasantharaj S; Kaliannan T; Pugazhendhi A Carbohydr Polym; 2020 Aug; 241():116243. PubMed ID: 32507166 [TBL] [Abstract][Full Text] [Related]
13. Reductive-degradation of carcinogenic azo dyes using Anacardium occidentale testa derived silver nanoparticles. Edison TNJI; Atchudan R; Sethuraman MG; Lee YR J Photochem Photobiol B; 2016 Sep; 162():604-610. PubMed ID: 27479841 [TBL] [Abstract][Full Text] [Related]
14. Green synthesis of copper oxide and manganese oxide nanoparticles from watermelon seed shell extract for enhanced photocatalytic reduction of methylene blue. Ekinci A; Kutluay S; Şahin Ö; Baytar O Int J Phytoremediation; 2023; 25(6):789-798. PubMed ID: 35976777 [TBL] [Abstract][Full Text] [Related]
15. Multi-functional copper oxide nanoparticles synthesized using Geremew A; Palmer L; Johnson A; Reeves S; Brooks N; Carson L Heliyon; 2024 May; 10(9):e30178. PubMed ID: 38726176 [TBL] [Abstract][Full Text] [Related]
16. Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. Hassan SE; Fouda A; Radwan AA; Salem SS; Barghoth MG; Awad MA; Abdo AM; El-Gamal MS J Biol Inorg Chem; 2019 May; 24(3):377-393. PubMed ID: 30915551 [TBL] [Abstract][Full Text] [Related]
17. Green synthesis of highly efficient and stable copper oxide nanoparticles using an aqueous seed extract of Moringa stenopetala for sunlight-assisted catalytic degradation of Congo red and alizarin red s. Aaga GF; Anshebo ST Heliyon; 2023 May; 9(5):e16067. PubMed ID: 37215876 [TBL] [Abstract][Full Text] [Related]
18. Green synthesis of copper oxide nanoparticles and its efficiency in degradation of rifampicin antibiotic. Nzilu DM; Madivoli ES; Makhanu DS; Wanakai SI; Kiprono GK; Kareru PG Sci Rep; 2023 Aug; 13(1):14030. PubMed ID: 37640783 [TBL] [Abstract][Full Text] [Related]
19. EPS-mediated biosynthesis of nanoparticles by Bacillus stratosphericus A07, their characterization and potential application in azo dye degradation. Anil A; Sanjeev KG; Kamarudheen N; Sebastian PM; Rao KVB Arch Microbiol; 2023 Jan; 205(2):72. PubMed ID: 36693945 [TBL] [Abstract][Full Text] [Related]
20. Biologically synthesized copper oxide nanoparticles enhanced intracellular damage in ciprofloxacin resistant ESBL producing bacteria. Rajivgandhi G; Maruthupandy M; Muneeswaran T; Ramachandran G; Manoharan N; Quero F; Anand M; Song JM Microb Pathog; 2019 Feb; 127():267-276. PubMed ID: 30550842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]