These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34607021)

  • 1. Spatiotemporal trajectories in resting-state FMRI revealed by convolutional variational autoencoder.
    Zhang X; Maltbie EA; Keilholz SD
    Neuroimage; 2021 Dec; 244():118588. PubMed ID: 34607021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representation learning of resting state fMRI with variational autoencoder.
    Kim JH; Zhang Y; Han K; Wen Z; Choi M; Liu Z
    Neuroimage; 2021 Nov; 241():118423. PubMed ID: 34303794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Resting-State Functional Magnetic Resonance Imaging Using Averaged Sliding Windows with Partial Correlations and Regression of Confounding Signals.
    Vakamudi K; Trapp C; Talaat K; Gao K; Sa De La Rocque Guimaraes B; Posse S
    Brain Connect; 2020 Oct; 10(8):448-463. PubMed ID: 32892629
    [No Abstract]   [Full Text] [Related]  

  • 4. Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder.
    Zhao Y; Dong Q; Chen H; Iraji A; Li Y; Makkie M; Kou Z; Liu T
    Med Image Anal; 2017 Dec; 42():200-211. PubMed ID: 28843214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Resting-State Functional MRI Methods for Characterizing Brain Dynamics.
    Maltbie E; Yousefi B; Zhang X; Kashyap A; Keilholz S
    Front Neural Circuits; 2022; 16():681544. PubMed ID: 35444518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging.
    Catalino MP; Yao S; Green DL; Laws ER; Golby AJ; Tie Y
    Neurosurg Focus; 2020 Feb; 48(2):E9. PubMed ID: 32006946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain state dynamics differ between eyes open and eyes closed rest.
    Ingram BT; Mayhew SD; Bagshaw AP
    Hum Brain Mapp; 2024 Jul; 45(10):e26746. PubMed ID: 38989618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring connectivity with large-scale Granger causality on resting-state functional MRI.
    DSouza AM; Abidin AZ; Leistritz L; Wismüller A
    J Neurosci Methods; 2017 Aug; 287():68-79. PubMed ID: 28629720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-brain electrophysiological functional connectivity dynamics in resting-state EEG.
    Shou G; Yuan H; Li C; Chen Y; Chen Y; Ding L
    J Neural Eng; 2020 Apr; 17(2):026016. PubMed ID: 32106106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of overlapping and interacting networks reveals intrinsic spatiotemporal organization of the human brain.
    Li J; Liu Y; Wisnowski JL; Leahy RM
    Neuroimage; 2023 Apr; 270():119944. PubMed ID: 36801371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resting state network connectivity is attenuated by fMRI acoustic noise.
    Pellegrino G; Schuler AL; Arcara G; Di Pino G; Piccione F; Kobayashi E
    Neuroimage; 2022 Feb; 247():118791. PubMed ID: 34920084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating repetitive spatiotemporal patterns from many subjects' resting-state fMRIs.
    Takeda Y; Itahashi T; Sato MA; Yamashita O
    Neuroimage; 2019 Dec; 203():116182. PubMed ID: 31525496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.
    Andoh J; Ferreira M; Leppert IR; Matsushita R; Pike B; Zatorre RJ
    Neuroimage; 2017 Feb; 147():726-735. PubMed ID: 27902936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional MRI.
    Wang M; Huang J; Liu M; Zhang D
    Med Image Anal; 2021 Jul; 71():102063. PubMed ID: 33910109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Explaining deep learning-based representations of resting state functional connectivity data: focusing on interpreting nonlinear patterns in autism spectrum disorder.
    Kim YG; Ravid O; Zheng X; Kim Y; Neria Y; Lee S; He X; Zhu X
    Front Psychiatry; 2024; 15():1397093. PubMed ID: 38832332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia.
    Kim J; Calhoun VD; Shim E; Lee JH
    Neuroimage; 2016 Jan; 124(Pt A):127-146. PubMed ID: 25987366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity.
    Ponce-Alvarez A; Deco G; Hagmann P; Romani GL; Mantini D; Corbetta M
    PLoS Comput Biol; 2015 Feb; 11(2):e1004100. PubMed ID: 25692996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alzheimer's Disease Projection From Normal to Mild Dementia Reflected in Functional Network Connectivity: A Longitudinal Study.
    Sendi MSE; Zendehrouh E; Miller RL; Fu Z; Du Y; Liu J; Mormino EC; Salat DH; Calhoun VD
    Front Neural Circuits; 2020; 14():593263. PubMed ID: 33551754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resting-State Co-activation Patterns as Promising Candidates for Prediction of Alzheimer's Disease in Aged Mice.
    Adhikari MH; Belloy ME; Van der Linden A; Keliris GA; Verhoye M
    Front Neural Circuits; 2020; 14():612529. PubMed ID: 33551755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.