These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 34607021)
21. Resting-State Co-activation Patterns as Promising Candidates for Prediction of Alzheimer's Disease in Aged Mice. Adhikari MH; Belloy ME; Van der Linden A; Keliris GA; Verhoye M Front Neural Circuits; 2020; 14():612529. PubMed ID: 33551755 [TBL] [Abstract][Full Text] [Related]
22. Unsupervised learning of functional network dynamics in resting state fMRI. Eavani H; Satterthwaite TD; Gur RE; Gur RC; Davatzikos C Inf Process Med Imaging; 2013; 23():426-37. PubMed ID: 24683988 [TBL] [Abstract][Full Text] [Related]
24. On applicability of PCA, voxel-wise variance normalization and dimensionality assumptions for sliding temporal window sICA in resting-state fMRI. Remes JJ; Abou Elseoud A; Ollila E; Haapea M; Starck T; Nikkinen J; Tervonen O; Silven O Magn Reson Imaging; 2013 Oct; 31(8):1338-48. PubMed ID: 23845397 [TBL] [Abstract][Full Text] [Related]
25. Nonlinear ICA of fMRI reveals primitive temporal structures linked to rest, task, and behavioral traits. Morioka H; Calhoun V; Hyvärinen A Neuroimage; 2020 Sep; 218():116989. PubMed ID: 32485305 [TBL] [Abstract][Full Text] [Related]
26. Tinnitus classification based on resting-state functional connectivity using a convolutional neural network architecture. Xu Q; Zhou LL; Xing C; Xu X; Feng Y; Lv H; Zhao F; Chen YC; Cai Y Neuroimage; 2024 Apr; 290():120566. PubMed ID: 38467345 [TBL] [Abstract][Full Text] [Related]
27. Data-efficient resting-state functional magnetic resonance imaging brain mapping with deep learning. Luckett PH; Park KY; Lee JJ; Lenze EJ; Wetherell JL; Eyler LT; Snyder AZ; Ances BM; Shimony JS; Leuthardt EC J Neurosurg; 2023 Nov; 139(5):1258-1269. PubMed ID: 37060318 [TBL] [Abstract][Full Text] [Related]
28. Global and structured waves of rs-fMRI signal identified as putative propagation of spontaneous neural activity. Amemiya S; Takao H; Hanaoka S; Ohtomo K Neuroimage; 2016 Jun; 133():331-340. PubMed ID: 27012499 [TBL] [Abstract][Full Text] [Related]
29. Explaining Deep Learning-Based Representations of Resting State Functional Connectivity Data: Focusing on Interpreting Nonlinear Patterns in Autism Spectrum Disorder. Kim YG; Ravid O; Zhang X; Kim Y; Neria Y; Lee S; He X; Zhu X bioRxiv; 2023 Sep; ():. PubMed ID: 37745501 [TBL] [Abstract][Full Text] [Related]
30. Modeling and augmenting of fMRI data using deep recurrent variational auto-encoder. Qiang N; Dong Q; Liang H; Ge B; Zhang S; Sun Y; Zhang C; Zhang W; Gao J; Liu T J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229310 [No Abstract] [Full Text] [Related]
31. Examining resting-state functional connectivity in first-episode schizophrenia with 7T fMRI and MEG. Lottman KK; Gawne TJ; Kraguljac NV; Killen JF; Reid MA; Lahti AC Neuroimage Clin; 2019; 24():101959. PubMed ID: 31377556 [TBL] [Abstract][Full Text] [Related]
32. State-space model with deep learning for functional dynamics estimation in resting-state fMRI. Suk HI; Wee CY; Lee SW; Shen D Neuroimage; 2016 Apr; 129():292-307. PubMed ID: 26774612 [TBL] [Abstract][Full Text] [Related]
33. Spatial dynamics within and between brain functional domains: A hierarchical approach to study time-varying brain function. Iraji A; Fu Z; Damaraju E; DeRamus TP; Lewis N; Bustillo JR; Lenroot RK; Belger A; Ford JM; McEwen S; Mathalon DH; Mueller BA; Pearlson GD; Potkin SG; Preda A; Turner JA; Vaidya JG; van Erp TGM; Calhoun VD Hum Brain Mapp; 2019 Apr; 40(6):1969-1986. PubMed ID: 30588687 [TBL] [Abstract][Full Text] [Related]
34. Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity. Thompson GJ; Pan WJ; Magnuson ME; Jaeger D; Keilholz SD Neuroimage; 2014 Jan; 84():1018-31. PubMed ID: 24071524 [TBL] [Abstract][Full Text] [Related]
35. Dynamic resting state fMRI analysis in mice reveals a set of Quasi-Periodic Patterns and illustrates their relationship with the global signal. Belloy ME; Naeyaert M; Abbas A; Shah D; Vanreusel V; van Audekerke J; Keilholz SD; Keliris GA; Van der Linden A; Verhoye M Neuroimage; 2018 Oct; 180(Pt B):463-484. PubMed ID: 29454935 [TBL] [Abstract][Full Text] [Related]
36. Multi-model order spatially constrained ICA reveals highly replicable group differences and consistent predictive results from resting data: A large N fMRI schizophrenia study. Meng X; Iraji A; Fu Z; Kochunov P; Belger A; Ford JM; McEwen S; Mathalon DH; Mueller BA; Pearlson G; Potkin SG; Preda A; Turner J; van Erp TGM; Sui J; Calhoun VD Neuroimage Clin; 2023; 38():103434. PubMed ID: 37209635 [TBL] [Abstract][Full Text] [Related]
38. Propagating patterns of intrinsic activity along macroscale gradients coordinate functional connections across the whole brain. Yousefi B; Keilholz S Neuroimage; 2021 May; 231():117827. PubMed ID: 33549755 [TBL] [Abstract][Full Text] [Related]
39. Identification of the Somatomotor Network from Language Task-based fMRI Compared with Resting-State fMRI in Patients with Brain Lesions. Beheshtian E; Jalilianhasanpour R; Modir Shanechi A; Sethi V; Wang G; Lindquist MA; Caffo BS; Agarwal S; Pillai JJ; Gujar SK; Sair HI Radiology; 2021 Oct; 301(1):178-184. PubMed ID: 34282966 [TBL] [Abstract][Full Text] [Related]
40. A dynamic system of brain networks revealed by fast transient EEG fluctuations and their fMRI correlates. Hunyadi B; Woolrich MW; Quinn AJ; Vidaurre D; De Vos M Neuroimage; 2019 Jan; 185():72-82. PubMed ID: 30287299 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]