These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34607159)

  • 1. Targeting mitochondria-inflammation circle by renal denervation reduces atheroprone endothelial phenotypes and atherosclerosis.
    Li Z; Li Q; Wang L; Li C; Xu M; Duan Y; Ma L; Li T; Chen Q; Wang Y; Wang Y; Feng J; Yin X; Wang X; Han J; Lu C
    Redox Biol; 2021 Nov; 47():102156. PubMed ID: 34607159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal denervation mitigates atherosclerosis in ApoE-/- mice via the suppression of inflammation.
    Chen H; Wang R; Xu F; Zang T; Ji M; Yin J; Chen J; Shen L; Ge J
    Am J Transl Res; 2020; 12(9):5362-5380. PubMed ID: 33042425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggravated endothelial endocrine dysfunction and intimal thickening of renal artery in high-fat diet-induced obese pigs following renal denervation.
    Su E; Zhao L; Yang X; Zhu B; Liu Y; Zhao W; Wang X; Qi D; Zhu L; Gao C
    BMC Cardiovasc Disord; 2020 Apr; 20(1):176. PubMed ID: 32295540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial Reactive Oxygen Species Mediate Lysophosphatidylcholine-Induced Endothelial Cell Activation.
    Li X; Fang P; Li Y; Kuo YM; Andrews AJ; Nanayakkara G; Johnson C; Fu H; Shan H; Du F; Hoffman NE; Yu D; Eguchi S; Madesh M; Koch WJ; Sun J; Jiang X; Wang H; Yang X
    Arterioscler Thromb Vasc Biol; 2016 Jun; 36(6):1090-100. PubMed ID: 27127201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear-Induced CCN1 Promotes Atheroprone Endothelial Phenotypes and Atherosclerosis.
    Hsu PL; Chen JS; Wang CY; Wu HL; Mo FE
    Circulation; 2019 Jun; 139(25):2877-2891. PubMed ID: 30917686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the sympathetic nervous system by renal denervation prevents reduction of aortic distensibility in atherosclerosis prone ApoE-deficient rats.
    Hohl M; Linz D; Fries P; Müller A; Stroeder J; Urban D; Speer T; Geisel J; Hummel B; Laufs U; Schirmer SH; Böhm M; Mahfoud F
    J Transl Med; 2016 Jun; 14(1):167. PubMed ID: 27277003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IL-35 (Interleukin-35) Suppresses Endothelial Cell Activation by Inhibiting Mitochondrial Reactive Oxygen Species-Mediated Site-Specific Acetylation of H3K14 (Histone 3 Lysine 14).
    Li X; Shao Y; Sha X; Fang P; Kuo YM; Andrews AJ; Li Y; Yang WY; Maddaloni M; Pascual DW; Luo JJ; Jiang X; Wang H; Yang X
    Arterioscler Thromb Vasc Biol; 2018 Mar; 38(3):599-609. PubMed ID: 29371247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TRAIL protects against endothelial dysfunction in vivo and inhibits angiotensin-II-induced oxidative stress in vascular endothelial cells in vitro.
    Manuneedhi Cholan P; Cartland SP; Dang L; Rayner BS; Patel S; Thomas SR; Kavurma MM
    Free Radic Biol Med; 2018 Oct; 126():341-349. PubMed ID: 30165101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ameliorating Endothelial Mitochondrial Dysfunction Restores Coronary Function via Transient Receptor Potential Vanilloid 1-Mediated Protein Kinase A/Uncoupling Protein 2 Pathway.
    Xiong S; Wang P; Ma L; Gao P; Gong L; Li L; Li Q; Sun F; Zhou X; He H; Chen J; Yan Z; Liu D; Zhu Z
    Hypertension; 2016 Feb; 67(2):451-60. PubMed ID: 26667415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal denervation attenuates progression of atherosclerosis in apolipoprotein E-deficient mice independent of blood pressure lowering.
    Wang H; Wang J; Guo C; Luo W; Kleiman K; Eitzman DT
    Hypertension; 2015 Apr; 65(4):758-65. PubMed ID: 25646301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atheroprone hemodynamics regulate fibronectin deposition to create positive feedback that sustains endothelial inflammation.
    Feaver RE; Gelfand BD; Wang C; Schwartz MA; Blackman BR
    Circ Res; 2010 Jun; 106(11):1703-11. PubMed ID: 20378855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disocin prevents postmenopausal atherosclerosis in ovariectomized LDLR-/- mice through a PGC-1α/ERα pathway leading to promotion of autophagy and inhibition of oxidative stress, inflammation and apoptosis.
    Yang Q; Wang C; Jin Y; Ma X; Xie T; Wang J; Liu K; Sun H
    Pharmacol Res; 2019 Oct; 148():104414. PubMed ID: 31449974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective inhibition of endothelial NF-κB signaling attenuates chronic intermittent hypoxia-induced atherosclerosis in mice.
    Song D; Fang G; Mao SZ; Ye X; Liu G; Miller EJ; Greenberg H; Liu SF
    Atherosclerosis; 2018 Mar; 270():68-75. PubMed ID: 29407890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of PGC-1α in Vascular Regulation: Implications for Atherosclerosis.
    Kadlec AO; Chabowski DS; Ait-Aissa K; Gutterman DD
    Arterioscler Thromb Vasc Biol; 2016 Aug; 36(8):1467-74. PubMed ID: 27312223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of extensively oxidized low-density lipoprotein on mitochondrial function and reactive oxygen species in porcine aortic endothelial cells.
    Roy Chowdhury SK; Sangle GV; Xie X; Stelmack GL; Halayko AJ; Shen GX
    Am J Physiol Endocrinol Metab; 2010 Jan; 298(1):E89-98. PubMed ID: 19843872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p53-PGC-1α pathway mediates oxidative mitochondrial damage and cardiomyocyte necrosis induced by monoamine oxidase-A upregulation: role in chronic left ventricular dysfunction in mice.
    Villeneuve C; Guilbeau-Frugier C; Sicard P; Lairez O; Ordener C; Duparc T; De Paulis D; Couderc B; Spreux-Varoquaux O; Tortosa F; Garnier A; Knauf C; Valet P; Borchi E; Nediani C; Gharib A; Ovize M; Delisle MB; Parini A; Mialet-Perez J
    Antioxid Redox Signal; 2013 Jan; 18(1):5-18. PubMed ID: 22738191
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Karunakaran D; Nguyen MA; Geoffrion M; Vreeken D; Lister Z; Cheng HS; Otte N; Essebier P; Wyatt H; Kandiah JW; Jung R; Alenghat FJ; Mompeon A; Lee R; Pan C; Gordon E; Rasheed A; Lusis AJ; Liu P; Matic LP; Hedin U; Fish JE; Guo L; Kolodgie F; Virmani R; van Gils JM; Rayner KJ
    Circulation; 2021 Jan; 143(2):163-177. PubMed ID: 33222501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial Dysfunction in Vascular Wall Cells and Its Role in Atherosclerosis.
    Salnikova D; Orekhova V; Grechko A; Starodubova A; Bezsonov E; Popkova T; Orekhov A
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated inflammation in macrophages.
    Wang Y; Wang GZ; Rabinovitch PS; Tabas I
    Circ Res; 2014 Jan; 114(3):421-33. PubMed ID: 24297735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isocitrate dehydrogenase 2 deficiency induces endothelial inflammation via p66sh-mediated mitochondrial oxidative stress.
    Choi SJ; Piao S; Nagar H; Jung SB; Kim S; Lee I; Kim SM; Song HJ; Shin N; Kim DW; Irani K; Jeon BH; Park JW; Kim CS
    Biochem Biophys Res Commun; 2018 Sep; 503(3):1805-1811. PubMed ID: 30072100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.