These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34607185)

  • 61. Dysregulation of Sleep Behavioral States in Narcolepsy.
    Schoch SF; Werth E; Poryazova R; Scammell TE; Baumann CR; Imbach LL
    Sleep; 2017 Dec; 40(12):. PubMed ID: 29029348
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need.
    Vassalli A; Franken P
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):E5464-E5473. PubMed ID: 28630298
    [No Abstract]   [Full Text] [Related]  

  • 63. Symptomatic narcolepsy, cataplexy and hypersomnia, and their implications in the hypothalamic hypocretin/orexin system.
    Nishino S; Kanbayashi T
    Sleep Med Rev; 2005 Aug; 9(4):269-310. PubMed ID: 16006155
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias.
    Mignot E; Lammers GJ; Ripley B; Okun M; Nevsimalova S; Overeem S; Vankova J; Black J; Harsh J; Bassetti C; Schrader H; Nishino S
    Arch Neurol; 2002 Oct; 59(10):1553-62. PubMed ID: 12374492
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A consensus definition of cataplexy in mouse models of narcolepsy.
    Scammell TE; Willie JT; Guilleminault C; Siegel JM;
    Sleep; 2009 Jan; 32(1):111-6. PubMed ID: 19189786
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The hypocretins (orexins) mediate the "phasic" components of REM sleep: A new hypothesis.
    Torterolo P; Chase MH
    Sleep Sci; 2014 Mar; 7(1):19-29. PubMed ID: 26483897
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Abnormal activity in hypothalamus and amygdala during humour processing in human narcolepsy with cataplexy.
    Schwartz S; Ponz A; Poryazova R; Werth E; Boesiger P; Khatami R; Bassetti CL
    Brain; 2008 Feb; 131(Pt 2):514-22. PubMed ID: 18094020
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Narcolepsy/cataplexy. III: Nocturnal sleep and wakefulness patterns.
    Bixler EO; Kales A; Vela-Bueno A; Drozdiak RA; Jacoby JA; Manfredi RL
    Int J Neurosci; 1986 Jun; 29(3-4):305-16. PubMed ID: 3733331
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Systemic administration of hypocretin-1 reduces cataplexy and normalizes sleep and waking durations in narcoleptic dogs.
    John J; Wu MF; Siegel JM
    Sleep Res Online; 2000; 3(1):23-8. PubMed ID: 11382896
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Continuous intrathecal orexin delivery inhibits cataplexy in a murine model of narcolepsy.
    Kaushik MK; Aritake K; Imanishi A; Kanbayashi T; Ichikawa T; Shimizu T; Urade Y; Yanagisawa M
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):6046-6051. PubMed ID: 29784823
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Hypocretin in locus coeruleus and dorsal raphe nucleus mediates inescapable footshock stimulation (IFS)-induced REM sleep alteration.
    Lo Y; Yi PL; Hsiao YT; Chang FC
    Sleep; 2022 Mar; 45(3):. PubMed ID: 34969120
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Disinhibition of perifornical hypothalamic neurones activates noradrenergic neurones and blocks pontine carbachol-induced REM sleep-like episodes in rats.
    Lu JW; Fenik VB; Branconi JL; Mann GL; Rukhadze I; Kubin L
    J Physiol; 2007 Jul; 582(Pt 2):553-67. PubMed ID: 17495048
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Noninvasive detection of sleep/wake changes and cataplexy-like behaviors in orexin/ataxin-3 transgenic narcoleptic mice across the disease onset.
    Sato M; Sagawa Y; Hirai N; Sato S; Okuro M; Kumar S; Kanbayashi T; Shimizu T; Sakai N; Nishino S
    Exp Neurol; 2014 Nov; 261():744-51. PubMed ID: 25118620
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Amygdala lesions reduce cataplexy in orexin knock-out mice.
    Burgess CR; Oishi Y; Mochizuki T; Peever JH; Scammell TE
    J Neurosci; 2013 Jun; 33(23):9734-42. PubMed ID: 23739970
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Induction of narcolepsy-like symptoms by orexin receptor antagonists in mice.
    Kaushik MK; Aritake K; Cherasse Y; Imanishi A; Kanbayashi T; Urade Y; Yanagisawa M
    Sleep; 2021 Aug; 44(8):. PubMed ID: 33609365
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Animal models of narcolepsy and the hypocretin/orexin system: Past, present, and future.
    Tisdale RK; Yamanaka A; Kilduff TS
    Sleep; 2021 Jun; 44(6):. PubMed ID: 33313880
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A comparative study of methods for automatic detection of rapid eye movement abnormal muscular activity in narcolepsy.
    Olesen AN; Cesari M; Christensen JAE; Sorensen HBD; Mignot E; Jennum P
    Sleep Med; 2018 Apr; 44():97-105. PubMed ID: 29530376
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Activity of medial mesopontine units during cataplexy and sleep-waking states in the narcoleptic dog.
    Siegel JM; Nienhuis R; Fahringer HM; Chiu C; Dement WC; Mignot E; Lufkin R
    J Neurosci; 1992 May; 12(5):1640-6. PubMed ID: 1578258
    [TBL] [Abstract][Full Text] [Related]  

  • 79. High-amplitude theta wave bursts during REM sleep and cataplexy in hypocretin-deficient narcoleptic mice.
    Bastianini S; Silvani A; Berteotti C; Lo Martire V; Zoccoli G
    J Sleep Res; 2012 Apr; 21(2):185-8. PubMed ID: 21883592
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Sleep neurobiology for the clinician.
    EspaƱa RA; Scammell TE
    Sleep; 2004 Jun; 27(4):811-20. PubMed ID: 15283019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.