These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 34607275)
1. Inner-ear augmented metal artifact reduction with simulation-based 3D generative adversarial networks. Wang Z; Vandersteen C; Demarcy T; Gnansia D; Raffaelli C; Guevara N; Delingette H Comput Med Imaging Graph; 2021 Oct; 93():101990. PubMed ID: 34607275 [TBL] [Abstract][Full Text] [Related]
2. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks. Hu Z; Jiang C; Sun F; Zhang Q; Ge Y; Yang Y; Liu X; Zheng H; Liang D Med Phys; 2019 Apr; 46(4):1686-1696. PubMed ID: 30697765 [TBL] [Abstract][Full Text] [Related]
3. MARGANVAC: metal artifact reduction method based on generative adversarial network with variable constraints. Li G; Ji L; You C; Gao S; Zhou L; Bai K; Luo S; Gu N Phys Med Biol; 2023 Oct; 68(20):. PubMed ID: 37696272 [No Abstract] [Full Text] [Related]
4. Metal artifact reduction for the segmentation of the intra cochlear anatomy in CT images of the ear with 3D-conditional GANs. Wang J; Noble JH; Dawant BM Med Image Anal; 2019 Dec; 58():101553. PubMed ID: 31525672 [TBL] [Abstract][Full Text] [Related]
5. Conditional Generative Adversarial Networks for Metal Artifact Reduction in CT Images of the Ear. Wang J; Zhao Y; Noble JH; Dawant BM Med Image Comput Comput Assist Interv; 2018 Sep; 11070():3-11. PubMed ID: 30693351 [TBL] [Abstract][Full Text] [Related]
6. Geometric and dosimetric impact of 3D generative adversarial network-based metal artifact reduction algorithm on VMAT and IMPT for the head and neck region. Nakamura M; Nakao M; Imanishi K; Hirashima H; Tsuruta Y Radiat Oncol; 2021 Jun; 16(1):96. PubMed ID: 34092240 [TBL] [Abstract][Full Text] [Related]
7. [Metal artifact reduction and clinical verification in oral and maxillofacial region based on deep learning]. Zeng W; Zhou SL; Guo JX; Tang W Zhonghua Kou Qiang Yi Xue Za Zhi; 2023 Jun; 58(6):540-546. PubMed ID: 37271998 [No Abstract] [Full Text] [Related]
8. Multi-modal feature-fusion for CT metal artifact reduction using edge-enhanced generative adversarial networks. Huang Z; Zhang G; Lin J; Pang Y; Wang H; Bai T; Zhong L Comput Methods Programs Biomed; 2022 Apr; 217():106700. PubMed ID: 35228146 [TBL] [Abstract][Full Text] [Related]
9. Deep convolutional-neural-network-based metal artifact reduction for CT-guided interventional oncology procedures (MARIO). Cao W; Parvinian A; Adamo D; Welch B; Callstrom M; Ren L; Missert A; Favazza CP Med Phys; 2024 Jun; 51(6):4231-4242. PubMed ID: 38353644 [TBL] [Abstract][Full Text] [Related]
10. An Innovative Metal Artifact Reduction Algorithm based on Res-U-Net GANs. Zhang Z; Yang M; Xu L; Yang J; Guo H; Wang J Curr Med Imaging; 2023; 19(13):1549-1560. PubMed ID: 36799418 [TBL] [Abstract][Full Text] [Related]
11. A semi-supervised learning method of latent features based on convolutional neural networks for CT metal artifact reduction. Shi Z; Wang N; Kong F; Cao H; Cao Q Med Phys; 2022 Jun; 49(6):3845-3859. PubMed ID: 35322430 [TBL] [Abstract][Full Text] [Related]
12. Improving CBCT quality to CT level using deep learning with generative adversarial network. Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647 [TBL] [Abstract][Full Text] [Related]
13. Convolutional neural network-based metal and streak artifacts reduction in dental CT images with sparse-view sampling scheme. Kim S; Ahn J; Kim B; Kim C; Baek J Med Phys; 2022 Sep; 49(9):6253-6277. PubMed ID: 35906986 [TBL] [Abstract][Full Text] [Related]
14. Efficient high cone-angle artifact reduction in circular cone-beam CT using deep learning with geometry-aware dimension reduction. Minnema J; van Eijnatten M; der Sarkissian H; Doyle S; Koivisto J; Wolff J; Forouzanfar T; Lucka F; Batenburg KJ Phys Med Biol; 2021 Jul; 66(13):. PubMed ID: 34107467 [TBL] [Abstract][Full Text] [Related]
15. Motion artifact removal in coronary CT angiography based on generative adversarial networks. Zhang L; Jiang B; Chen Q; Wang L; Zhao K; Zhang Y; Vliegenthart R; Xie X Eur Radiol; 2023 Jan; 33(1):43-53. PubMed ID: 35829786 [TBL] [Abstract][Full Text] [Related]
16. Inpainting the metal artifact region in MRI images by using generative adversarial networks with gated convolution. Xie K; Gao L; Lu Z; Li C; Xi Q; Zhang F; Sun J; Lin T; Sui J; Ni X Med Phys; 2022 Oct; 49(10):6424-6438. PubMed ID: 35982470 [TBL] [Abstract][Full Text] [Related]
17. Gaussian diffusion sinogram inpainting for X-ray CT metal artifact reduction. Peng C; Qiu B; Li M; Guan Y; Zhang C; Wu Z; Zheng J Biomed Eng Online; 2017 Jan; 16(1):1. PubMed ID: 28086973 [TBL] [Abstract][Full Text] [Related]
18. DL-based inpainting for metal artifact reduction for cone beam CT using metal path length information. Gottschalk TM; Maier A; Kordon F; Kreher BW Med Phys; 2023 Jan; 50(1):128-141. PubMed ID: 35925029 [TBL] [Abstract][Full Text] [Related]
19. Simulation-driven training of vision transformers enables metal artifact reduction of highly truncated CBCT scans. Fan F; Ritschl L; Beister M; Biniazan R; Wagner F; Kreher B; Gottschalk TM; Kappler S; Maier A Med Phys; 2024 May; 51(5):3360-3375. PubMed ID: 38150576 [TBL] [Abstract][Full Text] [Related]
20. Metal artifact reduction on cervical CT images by deep residual learning. Huang X; Wang J; Tang F; Zhong T; Zhang Y Biomed Eng Online; 2018 Nov; 17(1):175. PubMed ID: 30482231 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]