These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 34607275)
21. Half-scan artifact correction using generative adversarial network for dental CT. Hegazy MAA; Cho MH; Lee SY Comput Biol Med; 2021 May; 132():104313. PubMed ID: 33705996 [TBL] [Abstract][Full Text] [Related]
22. Deep learning-based ultrasound transducer induced CT metal artifact reduction using generative adversarial networks for ultrasound-guided cardiac radioablation. Puvanasunthararajah S; Camps SM; Wille ML; Fontanarosa D Phys Eng Sci Med; 2023 Dec; 46(4):1399-1410. PubMed ID: 37548887 [TBL] [Abstract][Full Text] [Related]
23. Metal Artifact Reduction in Cone-Beam Computed Tomography for Head and Neck Radiotherapy. Korpics M; Johnson P; Patel R; Surucu M; Choi M; Emami B; Roeske JC Technol Cancer Res Treat; 2016 Dec; 15(6):NP88-NP94. PubMed ID: 26614780 [TBL] [Abstract][Full Text] [Related]
24. An irregular metal trace inpainting network for x-ray CT metal artifact reduction. Peng C; Li B; Li M; Wang H; Zhao Z; Qiu B; Chen DZ Med Phys; 2020 Sep; 47(9):4087-4100. PubMed ID: 32463485 [TBL] [Abstract][Full Text] [Related]
25. Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography. Harms J; Lei Y; Wang T; Zhang R; Zhou J; Tang X; Curran WJ; Liu T; Yang X Med Phys; 2019 Sep; 46(9):3998-4009. PubMed ID: 31206709 [TBL] [Abstract][Full Text] [Related]
26. Rigid and non-rigid motion artifact reduction in X-ray CT using attention module. Ko Y; Moon S; Baek J; Shim H Med Image Anal; 2021 Jan; 67():101883. PubMed ID: 33166775 [TBL] [Abstract][Full Text] [Related]
27. Deep learning method for reducing metal artifacts in dental cone-beam CT using supplementary information from intra-oral scan. Hyun CM; Bayaraa T; Yun HS; Jang TJ; Park HS; Seo JK Phys Med Biol; 2022 Aug; 67(17):. PubMed ID: 35944531 [No Abstract] [Full Text] [Related]
28. Comparison of ring artifact removal methods using flat panel detector based CT images. Anas EM; Kim JG; Lee SY; Hasan K Biomed Eng Online; 2011 Aug; 10():72. PubMed ID: 21846411 [TBL] [Abstract][Full Text] [Related]
29. Artifact and Detail Attention Generative Adversarial Networks for Low-Dose CT Denoising. Zhang X; Han Z; Shangguan H; Han X; Cui X; Wang A IEEE Trans Med Imaging; 2021 Dec; 40(12):3901-3918. PubMed ID: 34329159 [TBL] [Abstract][Full Text] [Related]
30. Incorporation of residual attention modules into two neural networks for low-dose CT denoising. Li M; Du Q; Duan L; Yang X; Zheng J; Jiang H; Li M Med Phys; 2021 Jun; 48(6):2973-2990. PubMed ID: 33890681 [TBL] [Abstract][Full Text] [Related]
31. Photon-counting normalized metal artifact reduction (NMAR) in diagnostic CT. Byl A; Klein L; Sawall S; Heinze S; Schlemmer HP; Kachelrieß M Med Phys; 2021 Jul; 48(7):3572-3582. PubMed ID: 33973237 [TBL] [Abstract][Full Text] [Related]
32. Conditional generative adversarial network for 3D rigid-body motion correction in MRI. Johnson PM; Drangova M Magn Reson Med; 2019 Sep; 82(3):901-910. PubMed ID: 31006909 [TBL] [Abstract][Full Text] [Related]
33. Iterative image-domain ring artifact removal in cone-beam CT. Liang X; Zhang Z; Niu T; Yu S; Wu S; Li Z; Zhang H; Xie Y Phys Med Biol; 2017 Jul; 62(13):5276-5292. PubMed ID: 28585520 [TBL] [Abstract][Full Text] [Related]
34. A dual-stream deep convolutional network for reducing metal streak artifacts in CT images. Gjesteby L; Shan H; Yang Q; Xi Y; Jin Y; Giantsoudi D; Paganetti H; De Man B; Wang G Phys Med Biol; 2019 Nov; 64(23):235003. PubMed ID: 31618724 [TBL] [Abstract][Full Text] [Related]
35. A deep learning method for eliminating head motion artifacts in computed tomography. Su B; Wen Y; Liu Y; Liao S; Fu J; Quan G; Li Z Med Phys; 2022 Jan; 49(1):411-419. PubMed ID: 34786714 [TBL] [Abstract][Full Text] [Related]
36. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks. Shi Z; Li H; Cao Q; Wang Z; Cheng M Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786 [TBL] [Abstract][Full Text] [Related]
37. Frequency split metal artifact reduction (FSMAR) in computed tomography. Meyer E; Raupach R; Lell M; Schmidt B; Kachelrieß M Med Phys; 2012 Apr; 39(4):1904-16. PubMed ID: 22482612 [TBL] [Abstract][Full Text] [Related]
38. A new approach for reducing beam hardening artifacts in polychromatic X-ray computed tomography using more accurate prior image. Wang H; Xu Y; Shi H J Xray Sci Technol; 2018; 26(4):593-602. PubMed ID: 29562575 [TBL] [Abstract][Full Text] [Related]
39. Metal artifact reduction and tumor detection using photon-counting multi-energy computed tomography. Lee CL; Park J; Nam S; Choi J; Choi Y; Lee S; Lee KY; Cho M PLoS One; 2021; 16(3):e0247355. PubMed ID: 33667250 [TBL] [Abstract][Full Text] [Related]
40. Metal artifact reduction in 2D CT images with self-supervised cross-domain learning. Yu L; Zhang Z; Li X; Ren H; Zhao W; Xing L Phys Med Biol; 2021 Aug; 66(17):. PubMed ID: 34330119 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]