These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 34607434)

  • 1. Cooperative Shielding of Bi-Electrodes via In Situ Amorphous Electrode-Electrolyte Interphases for Practical High-Energy Lithium-Metal Batteries.
    Liang JY; Zhang XD; Zhang Y; Huang LB; Yan M; Shen ZZ; Wen R; Tang J; Wang F; Shi JL; Wan LJ; Guo YG
    J Am Chem Soc; 2021 Oct; 143(40):16768-16776. PubMed ID: 34607434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational Molecular Engineering via Electron Reconfiguration toward Robust Dual-Electrode/Electrolyte Interphases for High-Performance Lithium Metal Batteries.
    Zhang Y; Cao Y; Zhang B; Gong H; Zhang S; Wang X; Han X; Liu S; Yang M; Yang W; Sun J
    ACS Nano; 2024 Jun; 18(22):14764-14778. PubMed ID: 38776362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergetic regulation of SEI mechanics and crystallographic orientation for stable lithium metal pouch cells.
    Zhang Y; Qiao R; Nie Q; Zhao P; Li Y; Hong Y; Chen S; Li C; Sun B; Fan H; Deng J; Xie J; Liu F; Song J
    Nat Commun; 2024 May; 15(1):4454. PubMed ID: 38789429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulating the Electrode-Electrolyte Interfaces of Lithium-High Nickel Batteries via a Multifunctional Additive.
    Gao J; Zou Y; Han J; Zheng Z; Li K; Wang H; Wu S; Liang H; Hong W
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):11506-11515. PubMed ID: 38382476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into the Contribution of the Electrolyte Additive LiBF
    Qiu J; Guo J; Li J; Wu Y; Fan Z; Ye H; Fang Z; Zhang Z; Zeng R
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38016024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 570 Wh kg⁻
    Liu X; Li Y; Liu J; Wang H; Zhuang X; Ma J
    Adv Mater; 2024 Jun; 36(24):e2401505. PubMed ID: 38437452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constructing Matching Cathode-Anode Interphases with Improved Chemo-mechanical Stability for High-Energy Batteries.
    Chen S; Zheng G; Yao X; Xiao J; Zhao W; Li K; Fang J; Jiang Z; Huang Y; Ji Y; Yang K; Yin ZW; Zhang M; Pan F; Yang L
    ACS Nano; 2024 Feb; 18(8):6600-6611. PubMed ID: 38353590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Fabricated Non-Flammable Quasi-Solid Electrolytes for Li-Metal Batteries.
    Zhao J; Li M; Su H; Liu Y; Bai P; Liu H; Ma L; Li W; Sun J; Xu Y
    Small Methods; 2023 Sep; 7(9):e2300228. PubMed ID: 37150838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Efficacy and Polymeric Solid-Electrolyte Interphase for Closely Packed Li Electrodeposition.
    Li S; Liu Q; Zhang W; Fan L; Wang X; Wang X; Shen Z; Zang X; Zhao Y; Ma F; Lu Y
    Adv Sci (Weinh); 2021 Mar; 8(6):2003240. PubMed ID: 33747731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvation Structure Tuning Induces LiF/Li
    Li P; Cheng Z; Liu J; Che L; Zhou Y; Xu E; Tian X; Yuan Z
    Small; 2023 Dec; 19(49):e2303149. PubMed ID: 37608448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Energy Aqueous/Organic Hybrid Batteries Enabled by Cu
    Bi S; Zhang Y; Wang H; Tian J; Niu Z
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202312172. PubMed ID: 37853603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorinating All Interfaces Enables Super-Stable Solid-State Lithium Batteries by In Situ Conversion of Detrimental Surface Li
    Guo Y; Pan S; Yi X; Chi S; Yin X; Geng C; Yin Q; Zhan Q; Zhao Z; Jin FM; Fang H; He YB; Kang F; Wu S; Yang QH
    Adv Mater; 2024 Mar; 36(13):e2308493. PubMed ID: 38134134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-Fluorinated Electrolyte Engineering Enables Practical Wide-Temperature-Range Lithium Metal Batteries.
    Dong L; Luo D; Zhang B; Li Y; Yang T; Lei Z; Zhang X; Liu Y; Yang C; Chen Z
    ACS Nano; 2024 Jul; 18(28):18729-18742. PubMed ID: 38951993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrolyte Design for Low-Temperature Li-Metal Batteries: Challenges and Prospects.
    Sun S; Wang K; Hong Z; Zhi M; Zhang K; Xu J
    Nanomicro Lett; 2023 Nov; 16(1):35. PubMed ID: 38019309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosted Mg-CO
    Peng C; Xue L; Zhao Z; Guo L; Zhang C; Wang A; Mao J; Dou S; Guo Z
    Angew Chem Int Ed Engl; 2024 Jan; 63(2):e202313264. PubMed ID: 37985401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smart Solid-State Interphases Enable High-Safety and High-Energy Practical Lithium Batteries.
    Wu Y; Liu Y; Feng X; Ma Z; Xu X; Ren D; Han X; Li Y; Lu L; Wang L; He X; Ouyang M
    Adv Sci (Weinh); 2024 Jun; 11(22):e2400600. PubMed ID: 38582525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porosity of Solid Electrolyte Interphases on Alkali Metal Electrodes with Liquid Electrolytes.
    Lim K; Fenk B; Popovic J; Maier J
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51767-51774. PubMed ID: 34669366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrolyte Interphases in Aqueous Batteries.
    Sui Y; Ji X
    Angew Chem Int Ed Engl; 2024 Jan; 63(2):e202312585. PubMed ID: 37749061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prussian Blue Mg-Li Hybrid Batteries.
    Sun X; Duffort V; Nazar LF
    Adv Sci (Weinh); 2016 Aug; 3(8):1600044. PubMed ID: 27818909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in Inorganic Solid-State Electrolyte/Li Interface.
    Chen Y; Qian J; Li L; Wu F; Chen R
    Chemistry; 2024 Jan; 30(5):e202303454. PubMed ID: 37962516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.