These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 34607476)

  • 21. Effect of bone decalcification procedures on DNA in situ hybridization and comparative genomic hybridization. EDTA is highly preferable to a routinely used acid decalcifier.
    Alers JC; Krijtenburg PJ; Vissers KJ; van Dekken H
    J Histochem Cytochem; 1999 May; 47(5):703-10. PubMed ID: 10219063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrasonic decalcification of bone.
    Milan L; Trachtenberg MC
    Am J Surg Pathol; 1981 Sep; 5(6):573-9. PubMed ID: 7034555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human inner ear blood supply revisited: the Uppsala collection of temporal bone-an international resource of education and collaboration.
    Mei X; Atturo F; Wadin K; Larsson S; Agrawal S; Ladak HM; Li H; Rask-Andersen H
    Ups J Med Sci; 2018 Sep; 123(3):131-142. PubMed ID: 30204028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of EDTA with and without ultrasonics on removal of the smear layer.
    Kuah HG; Lui JN; Tseng PS; Chen NN
    J Endod; 2009 Mar; 35(3):393-6. PubMed ID: 19249602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Histological changes in the inner ear resulting from the application of ultrasonic energy.
    MCLAY K; FLINN M; ORMEROD FC
    J Laryngol Otol; 1961 Apr; 75():345-57. PubMed ID: 13774088
    [No Abstract]   [Full Text] [Related]  

  • 26. One-Step Preservation and Decalcification of Bony Tissue for Molecular Profiling.
    Mueller C; Harpole MG; Espina V
    Methods Mol Biol; 2017; 1606():85-102. PubMed ID: 28501995
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of ultrasound accelerates the decalcification process of bone matrix without affecting histological and immunohistochemical analysis.
    Chow DH; Zheng L; Tian L; Ho KS; Qin L; Guo X
    J Orthop Translat; 2019 Apr; 17():112-120. PubMed ID: 31194084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ULTRASONIC DECALCIFICATION OF BONE. AN EXPERIMENTAL AND CLINICAL STUDY.
    THORPE EJ; BELLOMY BB; SELLERS RF
    J Bone Joint Surg Am; 1963 Sep; 45():1257-9. PubMed ID: 14077988
    [No Abstract]   [Full Text] [Related]  

  • 29. Rapid decalcification of temporal bones with preservation of ultrastructure.
    Madden VJ; Henson MM
    Hear Res; 1997 Sep; 111(1-2):76-84. PubMed ID: 9307313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three dimensional MR gradient recalled echo imaging of the inner ear: comparison of FID and echo imaging techniques.
    Tien RD; Felsberg GJ; MacFall J
    Magn Reson Imaging; 1993; 11(3):429-35. PubMed ID: 8505877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [An anatomic facsimile model with origin inner ear structures for temporal bone preparations].
    Vorwerk U; Grote KH; Beyer C; Arens C; Vorwerk W
    Laryngorhinootologie; 2011 Dec; 90(12):747-52. PubMed ID: 21544750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficiency of different decalcification protocols for nasal osseous structures in a rat experimental model of allergic rhinitis, and their effects on epithelial histology: an attempt at standardization.
    Guibas GV; Lakis S; Gkimpas C; Manda M; Kapoukranidou D; Spandou E
    Exp Toxicol Pathol; 2014 Dec; 66(9-10):469-75. PubMed ID: 25238695
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Technic of demonstration of acetylcholinesterase activity in the inner ear. Methods of decalcification and conservation of enzymatic activity].
    Cortesina G
    Minerva Otorinolaringol; 1965; 15(11):182-4. PubMed ID: 4956210
    [No Abstract]   [Full Text] [Related]  

  • 34. Studies of the otic capsule. I. Reduced dead time ultrasonic probe for measurement of bone thickness.
    Johnson S; Sjöberg A; Stahle J
    Acta Otolaryngol; 1966 Dec; 62(6):532-44. PubMed ID: 5973124
    [No Abstract]   [Full Text] [Related]  

  • 35. Experimental Visualization of Labyrinthine Structure with Optical Coherence Tomography.
    Mohebbi S; Mirsalehi M; Kahrs LA; Ortmaier T; Lenarz T; Majdani O
    Iran J Otorhinolaryngol; 2017 Jan; 29(90):5-9. PubMed ID: 28229056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimizing immunofluorescence for the testing of autoantibodies in inner ear disorders.
    Soliman AM
    Arch Otorhinolaryngol; 1988; 245(1):28-35. PubMed ID: 3291840
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultra-High-Field Magnetic Resonance Imaging of the Human Inner Ear at 11.7 Tesla.
    Thylur DS; Jacobs RE; Go JL; Toga AW; Niparko JK
    Otol Neurotol; 2017 Jan; 38(1):133-138. PubMed ID: 27755367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of tissue decalcification on mRNA retention within bone for in-situ hybridization studies.
    Walsh L; Freemont AJ; Hoyland JA
    Int J Exp Pathol; 1993 Jun; 74(3):237-41. PubMed ID: 8392858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Speed Human Temporal Bone Sectioning for the Assessment of COVID-19-Associated Middle Ear Pathology.
    Andresen NS; Wood MK; Čiháková D; Stewart CM
    J Vis Exp; 2022 May; (183):. PubMed ID: 35665747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. THE DISTRIBUTION OF NUCLEIC ACIDS IN COCHLEAR CELLS.
    OSHIRO H; PERLMAN HB
    Laryngoscope; 1965 Jan; 75():44-56. PubMed ID: 14256351
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.