These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34607725)

  • 1. Prediction of operative mortality for patients undergoing cardiac surgical procedures without established risk scores.
    Ong CS; Reinertsen E; Sun H; Moonsamy P; Mohan N; Funamoto M; Kaneko T; Shekar PS; Schena S; Lawton JS; D'Alessandro DA; Westover MB; Aguirre AD; Sundt TM
    J Thorac Cardiovasc Surg; 2023 Apr; 165(4):1449-1459.e15. PubMed ID: 34607725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the development of acute kidney injury following cardiac surgery by machine learning.
    Tseng PY; Chen YT; Wang CH; Chiu KM; Peng YS; Hsu SP; Chen KL; Yang CY; Lee OK
    Crit Care; 2020 Jul; 24(1):478. PubMed ID: 32736589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive Utility of a Machine Learning Algorithm in Estimating Mortality Risk in Cardiac Surgery.
    Kilic A; Goyal A; Miller JK; Gjekmarkaj E; Tam WL; Gleason TG; Sultan I; Dubrawksi A
    Ann Thorac Surg; 2020 Jun; 109(6):1811-1819. PubMed ID: 31706872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of machine learning techniques in prediction of mortality following cardiac surgery: analysis of over 220 000 patients from a large national database.
    Sinha S; Dong T; Dimagli A; Vohra HA; Holmes C; Benedetto U; Angelini GD
    Eur J Cardiothorac Surg; 2023 Jun; 63(6):. PubMed ID: 37154705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence-Based Determination of Cut-Off Points for Increased Cardiac-Surgery Mortality Risk With EuroSCORE II and STS: The Best-Performing Risk Scoring Models in a Single-Centre Australian Population.
    Koo SK; Dignan R; Lo EYW; Williams C; Xuan W
    Heart Lung Circ; 2022 Apr; 31(4):590-601. PubMed ID: 34756532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms].
    Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning to Predict Mortality After Cardiothoracic Surgery Using Preoperative Chest Radiographs.
    Raghu VK; Moonsamy P; Sundt TM; Ong CS; Singh S; Cheng A; Hou M; Denning L; Gleason TG; Aguirre AD; Lu MT
    Ann Thorac Surg; 2023 Jan; 115(1):257-264. PubMed ID: 35609650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning-Based Prediction of Acute Kidney Injury Following Pediatric Cardiac Surgery: Model Development and Validation Study.
    Luo XQ; Kang YX; Duan SB; Yan P; Song GB; Zhang NY; Yang SK; Li JX; Zhang H
    J Med Internet Res; 2023 Jan; 25():e41142. PubMed ID: 36603200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Intraoperative Data on Risk Prediction for Mortality After Intra-Abdominal Surgery.
    Yan X; Goldsmith J; Mohan S; Turnbull ZA; Freundlich RE; Billings FT; Kiran RP; Li G; Kim M
    Anesth Analg; 2022 Jan; 134(1):102-113. PubMed ID: 34908548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine-learning Models Predict 30-Day Mortality, Cardiovascular Complications, and Respiratory Complications After Aseptic Revision Total Joint Arthroplasty.
    Abraham VM; Booth G; Geiger P; Balazs GC; Goldman A
    Clin Orthop Relat Res; 2022 Nov; 480(11):2137-2145. PubMed ID: 35767804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parsimonious machine learning models to predict resource use in cardiac surgery across a statewide collaborative.
    Verma A; Sanaiha Y; Hadaya J; Maltagliati AJ; Tran Z; Ramezani R; Shemin RJ; Benharash P;
    JTCVS Open; 2022 Sep; 11():214-228. PubMed ID: 36172420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Machine Learning Model to Predict Outcomes and Cost After Cardiac Surgery.
    Zea-Vera R; Ryan CT; Navarro SM; Havelka J; Wall MJ; Coselli JS; Rosengart TK; Chatterjee S; Ghanta RK
    Ann Thorac Surg; 2023 Jun; 115(6):1533-1542. PubMed ID: 35917942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation.
    Vaid A; Somani S; Russak AJ; De Freitas JK; Chaudhry FF; Paranjpe I; Johnson KW; Lee SJ; Miotto R; Richter F; Zhao S; Beckmann ND; Naik N; Kia A; Timsina P; Lala A; Paranjpe M; Golden E; Danieletto M; Singh M; Meyer D; O'Reilly PF; Huckins L; Kovatch P; Finkelstein J; Freeman RM; Argulian E; Kasarskis A; Percha B; Aberg JA; Bagiella E; Horowitz CR; Murphy B; Nestler EJ; Schadt EE; Cho JH; Cordon-Cardo C; Fuster V; Charney DS; Reich DL; Bottinger EP; Levin MA; Narula J; Fayad ZA; Just AC; Charney AW; Nadkarni GN; Glicksberg BS
    J Med Internet Res; 2020 Nov; 22(11):e24018. PubMed ID: 33027032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning].
    Zhu M; Hu C; He Y; Qian Y; Tang S; Hu Q; Hao C
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Jul; 35(7):696-701. PubMed ID: 37545445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The application of European system for cardiac operative risk evaluation II (EuroSCORE II) and Society of Thoracic Surgeons (STS) risk-score for risk stratification in Indian patients undergoing cardiac surgery.
    Borde D; Gandhe U; Hargave N; Pandey K; Khullar V
    Ann Card Anaesth; 2013; 16(3):163-6. PubMed ID: 23816669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can Machine-learning Algorithms Predict Early Revision TKA in the Danish Knee Arthroplasty Registry?
    El-Galaly A; Grazal C; Kappel A; Nielsen PT; Jensen SL; Forsberg JA
    Clin Orthop Relat Res; 2020 Sep; 478(9):2088-2101. PubMed ID: 32667760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of machine learning model in predicting the likelihood of blood transfusion after hip fracture surgery.
    Chen X; Pan J; Li Y; Tang R
    Aging Clin Exp Res; 2023 Nov; 35(11):2643-2656. PubMed ID: 37733228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning-based risk prediction of malignant arrhythmia in hospitalized patients with heart failure.
    Wang Q; Li B; Chen K; Yu F; Su H; Hu K; Liu Z; Wu G; Yan J; Su G
    ESC Heart Fail; 2021 Dec; 8(6):5363-5371. PubMed ID: 34585531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning models for mitral valve replacement: A comparative analysis with the Society of Thoracic Surgeons risk score.
    Orfanoudaki A; Giannoutsou A; Hashim S; Bertsimas D; Hagberg RC
    J Card Surg; 2022 Jan; 37(1):18-28. PubMed ID: 34669218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of machine learning models for mortality risk prediction after cardiac surgery.
    Fan Y; Dong J; Wu Y; Shen M; Zhu S; He X; Jiang S; Shao J; Song C
    Cardiovasc Diagn Ther; 2022 Feb; 12(1):12-23. PubMed ID: 35282663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.