These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34608134)

  • 21. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.
    Kasabov N; Dhoble K; Nuntalid N; Indiveri G
    Neural Netw; 2013 May; 41():188-201. PubMed ID: 23340243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resonance with subthreshold oscillatory drive organizes activity and optimizes learning in neural networks.
    Roach JP; Pidde A; Katz E; Wu J; Ognjanovski N; Aton SJ; Zochowski MR
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):E3017-E3025. PubMed ID: 29545273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks.
    Miconi T
    Elife; 2017 Feb; 6():. PubMed ID: 28230528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Learning rule of homeostatic synaptic scaling: presynaptic dependent or not.
    Liu JK
    Neural Comput; 2011 Dec; 23(12):3145-61. PubMed ID: 21919784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sparse Temporal Encoding of Visual Features for Robust Object Recognition by Spiking Neurons.
    Zheng Y; Li S; Yan R; Tang H; Tan KC
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):5823-5833. PubMed ID: 29994102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.
    Gardner B; Grüning A
    PLoS One; 2016; 11(8):e0161335. PubMed ID: 27532262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Target spike patterns enable efficient and biologically plausible learning for complex temporal tasks.
    Muratore P; Capone C; Paolucci PS
    PLoS One; 2021; 16(2):e0247014. PubMed ID: 33592040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning Universal Computations with Spikes.
    Thalmeier D; Uhlmann M; Kappen HJ; Memmesheimer RM
    PLoS Comput Biol; 2016 Jun; 12(6):e1004895. PubMed ID: 27309381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A robust and biologically plausible spike pattern recognition network.
    Larson E; Perrone BP; Sen K; Billimoria CP
    J Neurosci; 2010 Nov; 30(46):15566-72. PubMed ID: 21084611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stable learning in stochastic network states.
    El Boustani S; Yger P; Frégnac Y; Destexhe A
    J Neurosci; 2012 Jan; 32(1):194-214. PubMed ID: 22219282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neural modularity helps organisms evolve to learn new skills without forgetting old skills.
    Ellefsen KO; Mouret JB; Clune J
    PLoS Comput Biol; 2015 Apr; 11(4):e1004128. PubMed ID: 25837826
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synchrony detection and amplification by silicon neurons with STDP synapses.
    Bofill-i-petit A; Murray AF
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1296-304. PubMed ID: 15484902
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Learning probabilistic neural representations with randomly connected circuits.
    Maoz O; Tkačik G; Esteki MS; Kiani R; Schneidman E
    Proc Natl Acad Sci U S A; 2020 Oct; 117(40):25066-25073. PubMed ID: 32948691
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity.
    Fiete IR; Senn W; Wang CZ; Hahnloser RH
    Neuron; 2010 Feb; 65(4):563-76. PubMed ID: 20188660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A review of learning in biologically plausible spiking neural networks.
    Taherkhani A; Belatreche A; Li Y; Cosma G; Maguire LP; McGinnity TM
    Neural Netw; 2020 Feb; 122():253-272. PubMed ID: 31726331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heterogeneity in Neuronal Dynamics Is Learned by Gradient Descent for Temporal Processing Tasks.
    Winston CN; Mastrovito D; Shea-Brown E; Mihalas S
    Neural Comput; 2023 Mar; 35(4):555-592. PubMed ID: 36827598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DL-ReSuMe: A Delay Learning-Based Remote Supervised Method for Spiking Neurons.
    Taherkhani A; Belatreche A; Li Y; Maguire LP
    IEEE Trans Neural Netw Learn Syst; 2015 Dec; 26(12):3137-49. PubMed ID: 25794401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning spike-based population codes by reward and population feedback.
    Friedrich J; Urbanczik R; Senn W
    Neural Comput; 2010 Jul; 22(7):1698-717. PubMed ID: 20235820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spiking Neural Networks and online learning: An overview and perspectives.
    Lobo JL; Del Ser J; Bifet A; Kasabov N
    Neural Netw; 2020 Jan; 121():88-100. PubMed ID: 31536902
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Use of Hebbian Cell Assemblies for Nonlinear Computation.
    Tetzlaff C; Dasgupta S; Kulvicius T; Wörgötter F
    Sci Rep; 2015 Aug; 5():12866. PubMed ID: 26249242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.