BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 34608321)

  • 1. Differentiable biology: using deep learning for biophysics-based and data-driven modeling of molecular mechanisms.
    AlQuraishi M; Sorger PK
    Nat Methods; 2021 Oct; 18(10):1169-1180. PubMed ID: 34608321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13.
    Hou J; Wu T; Cao R; Cheng J
    Proteins; 2019 Dec; 87(12):1165-1178. PubMed ID: 30985027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer Learning for Molecular Cancer Classification Using Deep Neural Networks.
    Sevakula RK; Singh V; Verma NK; Kumar C; Cui Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):2089-2100. PubMed ID: 29993662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-native structure refinement using in vacuo energy minimization.
    Summa CM; Levitt M
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3177-82. PubMed ID: 17360625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing artificial neural networks, general linear models and support vector machines in building predictive models for small interfering RNAs.
    McQuisten KA; Peek AS
    PLoS One; 2009 Oct; 4(10):e7522. PubMed ID: 19847297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep-learning contact-map guided protein structure prediction in CASP13.
    Zheng W; Li Y; Zhang C; Pearce R; Mortuza SM; Zhang Y
    Proteins; 2019 Dec; 87(12):1149-1164. PubMed ID: 31365149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of deep learning in genomics.
    Liu J; Li J; Wang H; Yan J
    Sci China Life Sci; 2020 Dec; 63(12):1860-1878. PubMed ID: 33051704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training deep neural density estimators to identify mechanistic models of neural dynamics.
    Gonçalves PJ; Lueckmann JM; Deistler M; Nonnenmacher M; Öcal K; Bassetto G; Chintaluri C; Podlaski WF; Haddad SA; Vogels TP; Greenberg DS; Macke JH
    Elife; 2020 Sep; 9():. PubMed ID: 32940606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic biology: history, challenges and prospects.
    Haseloff J; Ajioka J
    J R Soc Interface; 2009 Aug; 6 Suppl 4(Suppl 4):S389-91. PubMed ID: 19493895
    [No Abstract]   [Full Text] [Related]  

  • 11. Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13).
    Senior AW; Evans R; Jumper J; Kirkpatrick J; Sifre L; Green T; Qin C; Žídek A; Nelson AWR; Bridgland A; Penedones H; Petersen S; Simonyan K; Crossan S; Kohli P; Jones DT; Silver D; Kavukcuoglu K; Hassabis D
    Proteins; 2019 Dec; 87(12):1141-1148. PubMed ID: 31602685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ion channel inverse problem: neuroinformatics meets biophysics.
    Cannon RC; D'Alessandro G
    PLoS Comput Biol; 2006 Aug; 2(8):e91. PubMed ID: 16933979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine and deep learning meet genome-scale metabolic modeling.
    Zampieri G; Vijayakumar S; Yaneske E; Angione C
    PLoS Comput Biol; 2019 Jul; 15(7):e1007084. PubMed ID: 31295267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning in Virtual Screening: Recent Applications and Developments.
    Kimber TB; Chen Y; Volkamer A
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33922714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning: new computational modelling techniques for genomics.
    Eraslan G; Avsec Ž; Gagneur J; Theis FJ
    Nat Rev Genet; 2019 Jul; 20(7):389-403. PubMed ID: 30971806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving protein fold recognition using triplet network and ensemble deep learning.
    Liu Y; Han K; Zhu YH; Zhang Y; Shen LC; Song J; Yu DJ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34226918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepHE: Accurately predicting human essential genes based on deep learning.
    Zhang X; Xiao W; Xiao W
    PLoS Comput Biol; 2020 Sep; 16(9):e1008229. PubMed ID: 32936825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of deep learning methods for blind protein contact prediction in CASP12.
    Wang S; Sun S; Xu J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):67-77. PubMed ID: 28845538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IGPRED: Combination of convolutional neural and graph convolutional networks for protein secondary structure prediction.
    Görmez Y; Sabzekar M; Aydın Z
    Proteins; 2021 Oct; 89(10):1277-1288. PubMed ID: 33993559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PARROT is a flexible recurrent neural network framework for analysis of large protein datasets.
    Griffith D; Holehouse AS
    Elife; 2021 Sep; 10():. PubMed ID: 34533455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.