BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34608754)

  • 1. Osteogenic Capability of Vaterite-Coated Nonwoven Polycaprolactone Scaffolds for In Vivo Bone Tissue Regeneration.
    Saveleva MS; Ivanov AN; Chibrikova JA; Abalymov AA; Surmeneva MA; Surmenev RA; Parakhonskiy BV; Lomova MV; Skirtach AG; Norkin IA
    Macromol Biosci; 2021 Dec; 21(12):e2100266. PubMed ID: 34608754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotary-jet spun polycaprolactone/nano-hydroxyapatite scaffolds modified by simulated body fluid influenced the flexural mode of the neoformed bone.
    Vasconcellos LMR; Elias CMV; Minhoto GB; Abdala JMA; Andrade TM; de Araujo JCR; Gusmão SBS; Viana BC; Marciano FR; Lobo AO
    J Mater Sci Mater Med; 2020 Jul; 31(8):72. PubMed ID: 32719958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds.
    Poh PSP; Hutmacher DW; Holzapfel BM; Solanki AK; Stevens MM; Woodruff MA
    Acta Biomater; 2016 Jan; 30():319-333. PubMed ID: 26563472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.
    Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid PCL/CaCO
    Saveleva MS; Ivanov AN; Kurtukova MO; Atkin VS; Ivanova AG; Lyubun GP; Martyukova AV; Cherevko EI; Sargsyan AK; Fedonnikov AS; Norkin IA; Skirtach AG; Gorin DA; Parakhonskiy BV
    Mater Sci Eng C Mater Biol Appl; 2018 Apr; 85():57-67. PubMed ID: 29407157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration.
    Qian Y; Zhou X; Zhang F; Diekwisch TGH; Luan X; Yang J
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37381-37396. PubMed ID: 31517483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particularities of Bone Regeneration in Rats after Implantation of Polycaprolactone Scaffold Mineralized with Vaterite with Adsorbed Tannic Acid.
    Ivanov AN; Saveleva MS; Kurtukova MO; Kustodov SV; Gladkova EV; Blinnikova VV; Babushkina IV; Parakhonskiy BV; Ulyanov VY; Norkin IA
    Bull Exp Biol Med; 2019 Jun; 167(2):275-278. PubMed ID: 31243675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vaterite coatings on electrospun polymeric fibers for biomedical applications.
    Savelyeva MS; Abalymov AA; Lyubun GP; Vidyasheva IV; Yashchenok AM; Douglas TE; Gorin DA; Parakhonskiy BV
    J Biomed Mater Res A; 2017 Jan; 105(1):94-103. PubMed ID: 27542979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ex Vivo and In Vivo Analyses of Novel 3D-Printed Bone Substitute Scaffolds Incorporating Biphasic Calcium Phosphate Granules for Bone Regeneration.
    Oberdiek F; Vargas CI; Rider P; Batinic M; Görke O; Radenković M; Najman S; Baena JM; Jung O; Barbeck M
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Berberine-releasing electrospun scaffold induces osteogenic differentiation of DPSCs and accelerates bone repair.
    Ma L; Yu Y; Liu H; Sun W; Lin Z; Liu C; Miao L
    Sci Rep; 2021 Jan; 11(1):1027. PubMed ID: 33441759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strontium incorporation improves the bone-forming ability of scaffolds derived from porcine bone.
    Cheng D; Liang Q; Li Y; Fan J; Wang G; Pan H; Ruan C
    Colloids Surf B Biointerfaces; 2018 Feb; 162():279-287. PubMed ID: 29216515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential bone regeneration effects of leptin- and osteolectin-coated 3D-printed PCL scaffolds: an
    Kim YR; Yun EB; Ryu DI; Kim BH; Kim JS; Kim YS; Kang JH; Cho EH; Koh JT; Lim HP; Park C; Lee BN
    Biomed Mater; 2024 May; 19(4):. PubMed ID: 38688311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D scaffold of PLLA/pearl and PLLA/nacre powder for bone regeneration.
    Liu Y; Huang Q; Feng Q
    Biomed Mater; 2013 Dec; 8(6):065001. PubMed ID: 24225162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporated-bFGF polycaprolactone/polyvinylidene fluoride nanocomposite scaffold promotes human induced pluripotent stem cells osteogenic differentiation.
    Abazari MF; Soleimanifar F; Enderami SE; Nematzadeh M; Nasiri N; Nejati F; Saburi E; Khodashenas S; Darbasizadeh B; Khani MM; Ghoraeian P
    J Cell Biochem; 2019 Oct; 120(10):16750-16759. PubMed ID: 31081968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalization of polycaprolactone scaffolds with hyaluronic acid and β-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro.
    Jensen J; Kraft DC; Lysdahl H; Foldager CB; Chen M; Kristiansen AA; Rölfing JH; Bünger CE
    Tissue Eng Part A; 2015 Feb; 21(3-4):729-39. PubMed ID: 25252795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration.
    Ren J; Blackwood KA; Doustgani A; Poh PP; Steck R; Stevens MM; Woodruff MA
    J Biomed Mater Res A; 2014 Sep; 102(9):3140-53. PubMed ID: 24133006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of the 3D-printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration.
    Heo SY; Ko SC; Oh GW; Kim N; Choi IW; Park WS; Jung WK
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1937-1944. PubMed ID: 30508311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and application of salicin-polycaprolactone 3D-printed scaffold in the healing of femur bone defects.
    Jalali H; Salemian M; Nabiuni M; Kouchesfehani HM; Bardei LK; Gregory C
    Biomed Mater; 2024 Mar; 19(3):. PubMed ID: 38498949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensionally printed polycaprolactone/beta-tricalcium phosphate scaffold was more effective as an rhBMP-2 carrier for new bone formation than polycaprolactone alone.
    Park SA; Lee HJ; Kim SY; Kim KS; Jo DW; Park SY
    J Biomed Mater Res A; 2021 Jun; 109(6):840-848. PubMed ID: 32776655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of calcium phosphate coatings within polycaprolactone scaffolds by simple, alkaline phosphatase based method.
    Jaroszewicz J; Idaszek J; Choinska E; Szlazak K; Hyc A; Osiecka-Iwan A; Swieszkowski W; Moskalewski S
    Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():319-328. PubMed ID: 30606539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.