BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 34608867)

  • 1. Visually induced changes in cytokine production in the chick choroid.
    Summers JA; Martinez E
    Elife; 2021 Oct; 10():. PubMed ID: 34608867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ocular expression of avian thymic hormone: changes during the recovery from induced myopia.
    Rada JA; Wiechmann AF
    Mol Vis; 2009; 15():778-92. PubMed ID: 19390653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibiting the transient choroidal thickening response using the nitric oxide synthase inhibitor l-NAME prevents the ameliorative effects of visual experience on ocular growth in two different visual paradigms.
    Nickla DL; Wilken E; Lytle G; Yom S; Mertz J
    Exp Eye Res; 2006 Aug; 83(2):456-64. PubMed ID: 16635488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of the nonspecific nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester on the choroidal compensatory response to myopic defocus in chickens.
    Nickla DL; Wildsoet CF
    Optom Vis Sci; 2004 Feb; 81(2):111-8. PubMed ID: 15127930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Choroidal vascular permeability in visually regulated eye growth.
    Pendrak K; Papastergiou GI; Lin T; Laties AM; Stone RA
    Exp Eye Res; 2000 May; 70(5):629-37. PubMed ID: 10870521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinoic acid synthesis by a population of choroidal stromal cells.
    Summers JA; Cano EM; Kaser-Eichberger A; Schroedl F
    Exp Eye Res; 2020 Dec; 201():108252. PubMed ID: 32961175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient increases in choroidal thickness are consistently associated with brief daily visual stimuli that inhibit ocular growth in chicks.
    Nickla DL
    Exp Eye Res; 2007 May; 84(5):951-9. PubMed ID: 17395180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks.
    Wildsoet C; Wallman J
    Vision Res; 1995 May; 35(9):1175-94. PubMed ID: 7610579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opposite effects of glucagon and insulin on compensation for spectacle lenses in chicks.
    Zhu X; Wallman J
    Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):24-36. PubMed ID: 18791176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibiting the neuronal isoform of nitric oxide synthase has similar effects on the compensatory choroidal and axial responses to myopic defocus in chicks as does the non-specific inhibitor L-NAME.
    Nickla DL; Damyanova P; Lytle G
    Exp Eye Res; 2009 Jun; 88(6):1092-9. PubMed ID: 19450449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal integration characteristics of the axial and choroidal responses to myopic defocus induced by prior form deprivation versus positive spectacle lens wear in chickens.
    Nickla DL; Sharda V; Troilo D
    Optom Vis Sci; 2005 Apr; 82(4):318-27. PubMed ID: 15829859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insulin, insulin-like growth factor-1, insulin receptor, and insulin-like growth factor-1 receptor expression in the chick eye and their regulation with imposed myopic or hyperopic defocus.
    Penha AM; Schaeffel F; Feldkaemper M
    Mol Vis; 2011; 17():1436-48. PubMed ID: 21655358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the biphasic decline in scleral proteoglycan synthesis during the recovery from induced myopia.
    Summers Rada JA; Hollaway LR
    Exp Eye Res; 2011 May; 92(5):394-400. PubMed ID: 21354134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compensation for spectacle lenses involves changes in proteoglycan synthesis in both the sclera and choroid.
    Nickla DL; Wildsoet C; Wallman J
    Curr Eye Res; 1997 Apr; 16(4):320-6. PubMed ID: 9134320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of choroidal ovotransferrin as a potential ocular growth regulator.
    Rada JA; Huang Y; Rada KG
    Curr Eye Res; 2001 Feb; 22(2):121-32. PubMed ID: 11402389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moving the retina: choroidal modulation of refractive state.
    Wallman J; Wildsoet C; Xu A; Gottlieb MD; Nickla DL; Marran L; Krebs W; Christensen AM
    Vision Res; 1995 Jan; 35(1):37-50. PubMed ID: 7839608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscarinic receptor protein expression in the ocular tissues of the chick during normal and myopic eye development.
    Vessey KA; Cottriall CL; McBrien NA
    Brain Res Dev Brain Res; 2002 Apr; 135(1-2):79-86. PubMed ID: 11978396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Choroidal retinoic acid synthesis: a possible mediator between refractive error and compensatory eye growth.
    Mertz JR; Wallman J
    Exp Eye Res; 2000 Apr; 70(4):519-27. PubMed ID: 10866000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Choroidal thickness changes during altered eye growth and refractive state in a primate.
    Troilo D; Nickla DL; Wildsoet CF
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1249-58. PubMed ID: 10798638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of muscarinic agents on chick choroids in intact eyes and eyecups: evidence for a muscarinic mechanism in choroidal thinning.
    Nickla DL; Zhu X; Wallman J
    Ophthalmic Physiol Opt; 2013 May; 33(3):245-56. PubMed ID: 23662958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.