These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 34609136)
1. Construction and Analysis of a Yeast for the Simultaneous Release and Esterification of the Varietal Thiol 3-Sulfanylhexan-1-ol. Kiene F; Pretorius IS; Rauhut D; von Wallbrunn C; van Wyk N J Agric Food Chem; 2021 Oct; 69(40):11919-11925. PubMed ID: 34609136 [TBL] [Abstract][Full Text] [Related]
2. Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma. Swiegers JH; Capone DL; Pardon KH; Elsey GM; Sefton MA; Francis IL; Pretorius IS Yeast; 2007 Jul; 24(7):561-74. PubMed ID: 17492802 [TBL] [Abstract][Full Text] [Related]
3. Insights into the relative contribution of four precursors to 3-sulfanylhexan-1-ol and 3-sulfanylhexylacetate biogenesis during fermentation. Muhl JR; Pilkington LI; Fedrizzi B; Deed RC Food Chem; 2024 Aug; 449():139193. PubMed ID: 38604037 [TBL] [Abstract][Full Text] [Related]
4. Unraveling the Mystery of 3-Sulfanylhexan-1-ol: The Evolution of Methodology for the Analysis of Precursors to 3-Sulfanylhexan-1-ol in Wine. Muhl JR; Pilkington LI; Fedrizzi B; Deed RC Foods; 2022 Jul; 11(14):. PubMed ID: 35885295 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen sulfide production during early yeast fermentation correlates with volatile sulfur compound biogenesis but not thiol release. Hou R; Jelley RE; van Leeuwen KA; Pinu FR; Fedrizzi B; Deed RC FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 37279910 [TBL] [Abstract][Full Text] [Related]
6. New Precursors to 3-Sulfanylhexan-1-ol? Investigating the Keto-Enol Tautomerism of 3- Muhl JR; Pilkington LI; Deed RC Molecules; 2021 Jul; 26(14):. PubMed ID: 34299536 [TBL] [Abstract][Full Text] [Related]
7. Vine nitrogen status and volatile thiols and their precursors from plot to transcriptome level. Helwi P; Guillaumie S; Thibon C; Keime C; Habran A; Hilbert G; Gomes E; Darriet P; Delrot S; van Leeuwen C BMC Plant Biol; 2016 Aug; 16(1):173. PubMed ID: 27498539 [TBL] [Abstract][Full Text] [Related]
8. Enhanced 3-Sulfanylhexan-1-ol Production in Sequential Mixed Fermentation with Torulaspora delbrueckii/Saccharomyces cerevisiae Reveals a Situation of Synergistic Interaction between Two Industrial Strains. Renault P; Coulon J; Moine V; Thibon C; Bely M Front Microbiol; 2016; 7():293. PubMed ID: 27014216 [TBL] [Abstract][Full Text] [Related]
9. The grape must non-Saccharomyces microbial community: impact on volatile thiol release. Zott K; Thibon C; Bely M; Lonvaud-Funel A; Dubourdieu D; Masneuf-Pomarede I Int J Food Microbiol; 2011 Dec; 151(2):210-5. PubMed ID: 21974981 [TBL] [Abstract][Full Text] [Related]
10. Precursors consumption preferences and thiol release capacity of the wine yeasts Saccharomyces cerevisiae, Torulaspora delbrueckii, and Lachancea thermotolerans. Vicente J; Kiene F; Fracassetti D; De Noni I; Shemehen R; Tarasov A; Dobrydnev AV; Marquina D; Santos A; Rauhut D; Belda I; Ruiz J Int J Food Microbiol; 2024 Dec; 425():110858. PubMed ID: 39163814 [TBL] [Abstract][Full Text] [Related]
11. Evolution and Correlation of Wang X; Chen L; Capone DL; Roland A; Jeffery DW J Agric Food Chem; 2020 Aug; 68(32):8676-8687. PubMed ID: 32786724 [No Abstract] [Full Text] [Related]
12. Chiral Polyfunctional Thiols and Their Conjugated Precursors upon Winemaking with Five Vitis vinifera Sauvignon blanc Clones. Chen L; Capone DL; Tondini FA; Jeffery DW J Agric Food Chem; 2018 May; 66(18):4674-4682. PubMed ID: 29701984 [TBL] [Abstract][Full Text] [Related]
13. Engineering Saccharomyces cerevisiae to release 3-Mercaptohexan-1-ol during fermentation through overexpression of an S. cerevisiae Gene, STR3, for improvement of wine aroma. Holt S; Cordente AG; Williams SJ; Capone DL; Jitjaroen W; Menz IR; Curtin C; Anderson PA Appl Environ Microbiol; 2011 Jun; 77(11):3626-32. PubMed ID: 21478306 [TBL] [Abstract][Full Text] [Related]
14. The influence of yeast on the aroma of Sauvignon Blanc wine. Swiegers JH; Kievit RL; Siebert T; Lattey KA; Bramley BR; Francis IL; King ES; Pretorius IS Food Microbiol; 2009 Apr; 26(2):204-11. PubMed ID: 19171264 [TBL] [Abstract][Full Text] [Related]
16. Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Lilly M; Lambrechts MG; Pretorius IS Appl Environ Microbiol; 2000 Feb; 66(2):744-53. PubMed ID: 10653746 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen catabolic repression controls the release of volatile thiols by Saccharomyces cerevisiae during wine fermentation. Thibon C; Marullo P; Claisse O; Cullin C; Dubourdieu D; Tominaga T FEMS Yeast Res; 2008 Nov; 8(7):1076-86. PubMed ID: 18462383 [TBL] [Abstract][Full Text] [Related]
18. Yeast genes required for conversion of grape precursors to varietal thiols in wine. Santiago M; Gardner RC FEMS Yeast Res; 2015 Aug; 15(5):fov034. PubMed ID: 26038341 [TBL] [Abstract][Full Text] [Related]
19. Inactivating Mutations in Irc7p Are Common in Wine Yeasts, Attenuating Carbon-Sulfur β-Lyase Activity and Volatile Sulfur Compound Production. Cordente AG; Borneman AR; Bartel C; Capone D; Solomon M; Roach M; Curtin CD Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30658969 [TBL] [Abstract][Full Text] [Related]
20. Impact of Lactobacillus plantarum on thiol precursor biotransformation leading to production of 3-sulfanylhexan-1-ol. Takase H; Sasaki K; Kiyomichi D; Kobayashi H; Matsuo H; Takata R Food Chem; 2018 Sep; 259():99-104. PubMed ID: 29680068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]