These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34609738)

  • 1. Spectra in low-rank localized layers (SpeLLL) for interpretable time-frequency analysis.
    Tuft M; Hall MH; Krafty RT
    Biometrics; 2023 Mar; 79(1):304-318. PubMed ID: 34609738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Empirical Frequency Band Analysis of Nonstationary Time Series.
    Bruce SA; Tang CY; Hall MH; Krafty RT
    J Am Stat Assoc; 2020; 115(532):1933-1945. PubMed ID: 34108777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditional adaptive Bayesian spectral analysis of nonstationary biomedical time series.
    Bruce SA; Hall MH; Buysse DJ; Krafty RT
    Biometrics; 2018 Mar; 74(1):260-269. PubMed ID: 28482111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonparametric spectral analysis of heart rate variability through penalized sum of squares.
    Krafty RT; Zhao M; Buysse DJ; Thayer JF; Hall M
    Stat Med; 2014 Apr; 33(8):1383-94. PubMed ID: 24254401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive Bayesian Time-Frequency Analysis of Multivariate Time Series.
    Li Z; Krafty R
    J Am Stat Assoc; 2019; 114(525):453-465. PubMed ID: 31156284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditional Spectral Analysis of Replicated Multiple Time Series with Application to Nocturnal Physiology.
    Krafty RT; Rosen O; Stoffer DS; Buysse DJ; Hall MH
    J Am Stat Assoc; 2017; 112(520):1405-1416. PubMed ID: 29430069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ANOPOW FOR REPLICATED NONSTATIONARY TIME SERIES IN EXPERIMENTS.
    Li Z; Yue YR; Bruce SA
    Ann Appl Stat; 2024 Mar; 18(1):328-349. PubMed ID: 38435672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive Bayesian Spectral Analysis of High-dimensional Nonstationary Time Series.
    Li Z; Rosen O; Ferrarelli F; Krafty RT
    J Comput Graph Stat; 2021; 30(3):794-807. PubMed ID: 35936018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-frequency analysis of heart rate variability using short-time fourier analysis.
    Elsenbruch S; Wang Z; Orr WC; Chen JD
    Physiol Meas; 2000 May; 21(2):229-40. PubMed ID: 10847190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New indices for quantification of the power spectrum of heart rate variability time series without the need of any frequency band definition.
    García-González MA; Fernández-Chimeno M; Ferrer J; Escorihuela RM; Parrado E; Capdevila L; Benítez A; Angulo R; Rodríguez FA; Iglesias X; Bescós R; Marina M; Padullés JM; Ramos-Castro J
    Physiol Meas; 2011 Aug; 32(8):995-1009. PubMed ID: 21654027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiovascular variability after arousal from sleep: time-varying spectral analysis.
    Blasi A; Jo J; Valladares E; Morgan BJ; Skatrud JB; Khoo MC
    J Appl Physiol (1985); 2003 Oct; 95(4):1394-404. PubMed ID: 12819215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scale-free dynamics of the synchronization between sleep EEG power bands and the high frequency component of heart rate variability in normal men and patients with sleep apnea-hypopnea syndrome.
    Dumont M; Jurysta F; Lanquart JP; Noseda A; van de Borne P; Linkowski P
    Clin Neurophysiol; 2007 Dec; 118(12):2752-64. PubMed ID: 17950029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-varying analysis of heart rate variability signals with a Kalman smoother algorithm.
    Tarvainen MP; Georgiadis SD; Ranta-Aho PO; Karjalainen PA
    Physiol Meas; 2006 Mar; 27(3):225-39. PubMed ID: 16462010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CANONICAL CORRELATION ANALYSIS BETWEEN TIME SERIES AND STATIC OUTCOMES, WITH APPLICATION TO THE SPECTRAL ANALYSIS OF HEART RATE VARIABILITY.
    Krafty RT; Hall M
    Ann Appl Stat; 2013 Mar; 7(1):570-587. PubMed ID: 24851143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of parasympathetic nerve function during sleep in patients with obstructive sleep apnea by instantaneous time-frequency analysis.
    Yamaguchi K; Ohki N; Kobayashi M; Satoya N; Inoue Y; Onizawa S; Maeda Y; Sekiguchi H; Suzuki M; Tsuji T; Aoshiba K; Nagai A
    Sleep Med; 2014 Jan; 15(1):33-41. PubMed ID: 24342227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Time-Varying Nonparametric Methodology for Assessing Changes in QT Variability Unrelated to Heart Rate Variability.
    Orini M; Pueyo E; Laguna P; Bailon R
    IEEE Trans Biomed Eng; 2018 Jul; 65(7):1443-1451. PubMed ID: 28991727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study.
    Tsuji H; Venditti FJ; Manders ES; Evans JC; Larson MG; Feldman CL; Levy D
    Circulation; 1994 Aug; 90(2):878-83. PubMed ID: 8044959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomic changes during wake-sleep transition: a heart rate variability based approach.
    Shinar Z; Akselrod S; Dagan Y; Baharav A
    Auton Neurosci; 2006 Dec; 130(1-2):17-27. PubMed ID: 16759916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the quantification of heart rate variability spectral parameters using time-frequency and time-varying methods.
    Mainardi LT
    Philos Trans A Math Phys Eng Sci; 2009 Jan; 367(1887):255-75. PubMed ID: 18936017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-varying spectrum estimation of heart rate variability signals with Kalman smoother algorithm.
    Tarvainen MP; Georgiadis S; Lipponen JA; Hakkarainen M; Karjalainen PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1-4. PubMed ID: 19963704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.