These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 34609750)
1. An Optimized Radiomics Model Based on Automated Breast Volume Scan Images to Identify Breast Lesions: Comparison of Machine Learning Methods: Comparison of Machine Learning Methods. Wang H; Yang X; Ma S; Zhu K; Guo S J Ultrasound Med; 2022 Jul; 41(7):1643-1655. PubMed ID: 34609750 [TBL] [Abstract][Full Text] [Related]
2. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods. Wang X; Wan Q; Chen H; Li Y; Li X Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795 [TBL] [Abstract][Full Text] [Related]
3. Radiomics Analysis of Breast Lesions in Combination with Coronal Plane of ABVS and Strain Elastography. Ma Q; Shen C; Gao Y; Duan Y; Li W; Lu G; Qin X; Zhang C; Wang J Breast Cancer (Dove Med Press); 2023; 15():381-390. PubMed ID: 37260586 [TBL] [Abstract][Full Text] [Related]
4. Prediction of unenhanced lesion evolution in multiple sclerosis using radiomics-based models: a machine learning approach. Peng Y; Zheng Y; Tan Z; Liu J; Xiang Y; Liu H; Dai L; Xie Y; Wang J; Zeng C; Li Y Mult Scler Relat Disord; 2021 Aug; 53():102989. PubMed ID: 34052741 [TBL] [Abstract][Full Text] [Related]
5. Radiomics-based machine learning analysis and characterization of breast lesions with multiparametric diffusion-weighted MR. Sun K; Jiao Z; Zhu H; Chai W; Yan X; Fu C; Cheng JZ; Yan F; Shen D J Transl Med; 2021 Oct; 19(1):443. PubMed ID: 34689804 [TBL] [Abstract][Full Text] [Related]
6. Preoperative discrimination of invasive and non-invasive breast cancer using machine learning based on automated breast volume scanning (ABVS) radiomics and virtual touch quantification (VTQ). Fan L; Wu Y; Wu S; Zhang C; Zhu X Discov Oncol; 2024 Oct; 15(1):565. PubMed ID: 39406987 [TBL] [Abstract][Full Text] [Related]
7. Predicting the risk stratification of gastrointestinal stromal tumors using machine learning-based ultrasound radiomics. Zhuo M; Tang Y; Guo J; Qian Q; Xue E; Chen Z J Med Ultrason (2001); 2024 Jan; 51(1):71-82. PubMed ID: 37798591 [TBL] [Abstract][Full Text] [Related]
8. ABVS-Based Radiomics for Early Predicting the Efficacy of Neoadjuvant Chemotherapy in Patients with Breast Cancers. Jiang W; Deng X; Zhu T; Fang J; Li J Breast Cancer (Dove Med Press); 2023; 15():625-636. PubMed ID: 37600669 [TBL] [Abstract][Full Text] [Related]
9. A Radiomics Study: Classification of Breast Lesions by Textural Features from Mammography Images. Letchumanan N; Wong JHD; Tan LK; Ab Mumin N; Ng WL; Chan WY; Rahmat K J Digit Imaging; 2023 Aug; 36(4):1533-1540. PubMed ID: 37253893 [TBL] [Abstract][Full Text] [Related]
10. Automated Breast Volume Scanning: Identifying 3-D Coronal Plane Imaging Features May Help Categorize Complex Cysts. Wang HY; Jiang YX; Zhu QL; Zhang J; Xiao MS; Liu H; Dai Q; Li JC; Sun Q Ultrasound Med Biol; 2016 Mar; 42(3):689-98. PubMed ID: 26742895 [TBL] [Abstract][Full Text] [Related]
11. Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning-based radiomics. Mao B; Zhang L; Ning P; Ding F; Wu F; Lu G; Geng Y; Ma J Eur Radiol; 2020 Dec; 30(12):6924-6932. PubMed ID: 32696256 [TBL] [Abstract][Full Text] [Related]
12. Automated breast volume scanner based Radiomics for non-invasively prediction of lymphovascular invasion status in breast cancer. Li Y; Wu X; Yan Y; Zhou P BMC Cancer; 2023 Aug; 23(1):813. PubMed ID: 37648970 [TBL] [Abstract][Full Text] [Related]
13. Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: A multicenter radiomics study. Hamerla G; Meyer HJ; Schob S; Ginat DT; Altman A; Lim T; Gihr GA; Horvath-Rizea D; Hoffmann KT; Surov A Magn Reson Imaging; 2019 Nov; 63():244-249. PubMed ID: 31425811 [TBL] [Abstract][Full Text] [Related]
14. A method for the automated classification of benign and malignant masses on digital breast tomosynthesis images using machine learning and radiomic features. Sakai A; Onishi Y; Matsui M; Adachi H; Teramoto A; Saito K; Fujita H Radiol Phys Technol; 2020 Mar; 13(1):27-36. PubMed ID: 31686300 [TBL] [Abstract][Full Text] [Related]
15. Clinical value of radiomics and machine learning in breast ultrasound: a multicenter study for differential diagnosis of benign and malignant lesions. Romeo V; Cuocolo R; Apolito R; Stanzione A; Ventimiglia A; Vitale A; Verde F; Accurso A; Amitrano M; Insabato L; Gencarelli A; Buonocore R; Argenzio MR; Cascone AM; Imbriaco M; Maurea S; Brunetti A Eur Radiol; 2021 Dec; 31(12):9511-9519. PubMed ID: 34018057 [TBL] [Abstract][Full Text] [Related]
16. Classification of MR-Detected Additional Lesions in Patients With Breast Cancer Using a Combination of Radiomics Analysis and Machine Learning. Lee HJ; Nguyen AT; Ki SY; Lee JE; Do LN; Park MH; Lee JS; Kim HJ; Park I; Lim HS Front Oncol; 2021; 11():744460. PubMed ID: 34926256 [TBL] [Abstract][Full Text] [Related]
17. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics. Mao B; Ma J; Duan S; Xia Y; Tao Y; Zhang L Eur Radiol; 2021 Jul; 31(7):4576-4586. PubMed ID: 33447862 [TBL] [Abstract][Full Text] [Related]
18. Pulmonary MRI Radiomics and Machine Learning: Effect of Intralesional Heterogeneity on Classification of Lesion. Wang X; Li X; Chen H; Peng Y; Li Y Acad Radiol; 2022 Feb; 29 Suppl 2():S73-S81. PubMed ID: 33495072 [TBL] [Abstract][Full Text] [Related]
19. Use of radiomics based on Zhou Y; Ma XL; Zhang T; Wang J; Zhang T; Tian R Eur J Nucl Med Mol Imaging; 2021 Aug; 48(9):2904-2913. PubMed ID: 33547553 [TBL] [Abstract][Full Text] [Related]
20. Preoperative MRI-Based Radiomic Machine-Learning Nomogram May Accurately Distinguish Between Benign and Malignant Soft-Tissue Lesions: A Two-Center Study. Wang H; Zhang J; Bao S; Liu J; Hou F; Huang Y; Chen H; Duan S; Hao D; Liu J J Magn Reson Imaging; 2020 Sep; 52(3):873-882. PubMed ID: 32112598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]