These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 34609750)
21. Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma. Tang Y; Yang CM; Su S; Wang WJ; Fan LP; Shu J BMC Cancer; 2021 Nov; 21(1):1268. PubMed ID: 34819043 [TBL] [Abstract][Full Text] [Related]
22. Whole-tumor 3D volumetric MRI-based radiomics approach for distinguishing between benign and malignant soft tissue tumors. Fields BKK; Demirjian NL; Hwang DH; Varghese BA; Cen SY; Lei X; Desai B; Duddalwar V; Matcuk GR Eur Radiol; 2021 Nov; 31(11):8522-8535. PubMed ID: 33893534 [TBL] [Abstract][Full Text] [Related]
23. Diagnostic Performance of 2D and 3D T2WI-Based Radiomics Features With Machine Learning Algorithms to Distinguish Solid Solitary Pulmonary Lesion. Wan Q; Zhou J; Xia X; Hu J; Wang P; Peng Y; Zhang T; Sun J; Song Y; Yang G; Li X Front Oncol; 2021; 11():683587. PubMed ID: 34868905 [TBL] [Abstract][Full Text] [Related]
24. Considerable effects of imaging sequences, feature extraction, feature selection, and classifiers on radiomics-based prediction of microvascular invasion in hepatocellular carcinoma using magnetic resonance imaging. Dai H; Lu M; Huang B; Tang M; Pang T; Liao B; Cai H; Huang M; Zhou Y; Chen X; Ding H; Feng ST Quant Imaging Med Surg; 2021 May; 11(5):1836-1853. PubMed ID: 33936969 [TBL] [Abstract][Full Text] [Related]
25. A radiomics method based on MR FS-T2WI sequence for diagnosing of autosomal dominant polycystic kidney disease progression. Cong L; Hua QQ; Huang ZQ; Ma QL; Wang XM; Huang CC; Xu JX; Ma T Eur Rev Med Pharmacol Sci; 2021 Sep; 25(18):5769-5780. PubMed ID: 34604968 [TBL] [Abstract][Full Text] [Related]
26. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259 [TBL] [Abstract][Full Text] [Related]
27. Prediction of High-Risk Cytogenetic Status in Multiple Myeloma Based on Magnetic Resonance Imaging: Utility of Radiomics and Comparison of Machine Learning Methods. Liu J; Zeng P; Guo W; Wang C; Geng Y; Lang N; Yuan H J Magn Reson Imaging; 2021 Oct; 54(4):1303-1311. PubMed ID: 33979466 [TBL] [Abstract][Full Text] [Related]
28. Machine-Learning-Based Radiomics for Classifying Glioma Grade from Magnetic Resonance Images of the Brain. Kumar A; Jha AK; Agarwal JP; Yadav M; Badhe S; Sahay A; Epari S; Sahu A; Bhattacharya K; Chatterjee A; Ganeshan B; Rangarajan V; Moyiadi A; Gupta T; Goda JS J Pers Med; 2023 May; 13(6):. PubMed ID: 37373909 [TBL] [Abstract][Full Text] [Related]
29. MRI-based radiomics analysis for differentiating phyllodes tumors of the breast from fibroadenomas. Tsuchiya M; Masui T; Terauchi K; Yamada T; Katyayama M; Ichikawa S; Noda Y; Goshima S Eur Radiol; 2022 Jun; 32(6):4090-4100. PubMed ID: 35044510 [TBL] [Abstract][Full Text] [Related]
30. Radiomics analysis for the differentiation of autoimmune pancreatitis and pancreatic ductal adenocarcinoma in Zhang Y; Cheng C; Liu Z; Wang L; Pan G; Sun G; Chang Y; Zuo C; Yang X Med Phys; 2019 Oct; 46(10):4520-4530. PubMed ID: 31348535 [TBL] [Abstract][Full Text] [Related]
31. Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model. Zheng Y; Chen L; Liu M; Wu J; Yu R; Lv F Front Oncol; 2021; 11():618604. PubMed ID: 34567999 [TBL] [Abstract][Full Text] [Related]
32. 3D DCE-MRI Radiomic Analysis for Malignant Lesion Prediction in Breast Cancer Patients. Militello C; Rundo L; Dimarco M; Orlando A; Woitek R; D'Angelo I; Russo G; Bartolotta TV Acad Radiol; 2022 Jun; 29(6):830-840. PubMed ID: 34600805 [TBL] [Abstract][Full Text] [Related]
33. Clinico-radiological characteristic-based machine learning in reducing unnecessary prostate biopsies of PI-RADS 3 lesions with dual validation. Kan Y; Zhang Q; Hao J; Wang W; Zhuang J; Gao J; Huang H; Liang J; Marra G; Calleris G; Oderda M; Zhao X; Gontero P; Guo H Eur Radiol; 2020 Nov; 30(11):6274-6284. PubMed ID: 32524222 [TBL] [Abstract][Full Text] [Related]
34. Improved characterization of sub-centimeter enhancing breast masses on MRI with radiomics and machine learning in BRCA mutation carriers. Lo Gullo R; Daimiel I; Rossi Saccarelli C; Bitencourt A; Gibbs P; Fox MJ; Thakur SB; Martinez DF; Jochelson MS; Morris EA; Pinker K Eur Radiol; 2020 Dec; 30(12):6721-6731. PubMed ID: 32594207 [TBL] [Abstract][Full Text] [Related]
35. Parameter tuning in machine learning based on radiomics biomarkers of lung cancer. Luo Y; Li Y; Zhang Y; Zhang J; Liang M; Jiang L; Guo L J Xray Sci Technol; 2022; 30(3):477-490. PubMed ID: 35342074 [TBL] [Abstract][Full Text] [Related]
36. Machine Learning Methods for Optimal Radiomics-Based Differentiation Between Recurrence and Inflammation: Application to Nasopharyngeal Carcinoma Post-therapy PET/CT Images. Du D; Feng H; Lv W; Ashrafinia S; Yuan Q; Wang Q; Yang W; Feng Q; Chen W; Rahmim A; Lu L Mol Imaging Biol; 2020 Jun; 22(3):730-738. PubMed ID: 31338709 [TBL] [Abstract][Full Text] [Related]
37. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients. Tahmassebi A; Wengert GJ; Helbich TH; Bago-Horvath Z; Alaei S; Bartsch R; Dubsky P; Baltzer P; Clauser P; Kapetas P; Morris EA; Meyer-Baese A; Pinker K Invest Radiol; 2019 Feb; 54(2):110-117. PubMed ID: 30358693 [TBL] [Abstract][Full Text] [Related]
38. Bi-parametric magnetic resonance imaging based radiomics for the identification of benign and malignant prostate lesions: cross-vendor validation. Ji X; Zhang J; Shi W; He D; Bao J; Wei X; Huang Y; Liu Y; Chen JC; Gao X; Tang Y; Xia W Phys Eng Sci Med; 2021 Sep; 44(3):745-754. PubMed ID: 34075559 [TBL] [Abstract][Full Text] [Related]
39. [Value of the application of enhanced CT radiomics and machine learning in preoperative prediction of microvascular invasion in hepatocellular carcinoma]. Yu YX; Hu CH; Wang XM; Fan YF; Hu MJ; Shi C; Hu S; Zhu M; Zhang Y Zhonghua Yi Xue Za Zhi; 2021 May; 101(17):1239-1245. PubMed ID: 34865392 [No Abstract] [Full Text] [Related]
40. Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer. Gu Q; Feng Z; Liang Q; Li M; Deng J; Ma M; Wang W; Liu J; Liu P; Rong P Eur J Radiol; 2019 Sep; 118():32-37. PubMed ID: 31439255 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]