BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34609839)

  • 1. Blue Light Activated Rapamycin for Optical Control of Protein Dimerization in Cells and Zebrafish Embryos.
    Courtney TM; Darrah KE; Horst TJ; Tsang M; Deiters A
    ACS Chem Biol; 2021 Nov; 16(11):2434-2443. PubMed ID: 34609839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatio-temporal manipulation of small GTPase activity at subcellular level and on timescale of seconds in living cells.
    DeRose R; Pohlmeyer C; Umeda N; Ueno T; Nagano T; Kuo S; Inoue T
    J Vis Exp; 2012 Mar; (61):. PubMed ID: 22433289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-cleavable rapamycin dimer as an optical trigger for protein dimerization.
    Brown KA; Zou Y; Shirvanyants D; Zhang J; Samanta S; Mantravadi PK; Dokholyan NV; Deiters A
    Chem Commun (Camb); 2015 Apr; 51(26):5702-5. PubMed ID: 25716548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted protein oxidation using a chromophore-modified rapamycin analog.
    Courtney TM; Hankinson CP; Horst TJ; Deiters A
    Chem Sci; 2021 Oct; 12(40):13425-13433. PubMed ID: 34777761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemically induced and light-independent cryptochrome photoreceptor activation.
    Rosenfeldt G; Viana RM; Mootz HD; von Arnim AG; Batschauer A
    Mol Plant; 2008 Jan; 1(1):4-14. PubMed ID: 20031911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An inducible system for in vitro and in vivo Fas activation using FKBP-FRB-rapamycin complex.
    Kim S; Shin J; Oh H; Ahn S; Kim N; Heo WD
    Biochem Biophys Res Commun; 2020 Mar; 523(2):473-480. PubMed ID: 31882118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NEX-TRAP, a novel method for in vivo analysis of nuclear export of proteins.
    Raschbichler V; Lieber D; Bailer SM
    Traffic; 2012 Oct; 13(10):1326-34. PubMed ID: 22708827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optochemical Control of Protein Localization and Activity within Cell-like Compartments.
    Caldwell RM; Bermudez JG; Thai D; Aonbangkhen C; Schuster BS; Courtney T; Deiters A; Hammer DA; Chenoweth DM; Good MC
    Biochemistry; 2018 May; 57(18):2590-2596. PubMed ID: 29671583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the FKBP.rapamycin.FRB ternary complex.
    Banaszynski LA; Liu CW; Wandless TJ
    J Am Chem Soc; 2005 Apr; 127(13):4715-21. PubMed ID: 15796538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free Single-Molecule Quantification of Rapamycin-induced FKBP-FRB Dimerization for Direct Control of Cellular Mechanotransduction.
    Wang Y; Barnett SFH; Le S; Guo Z; Zhong X; Kanchanawong P; Yan J
    Nano Lett; 2019 Oct; 19(10):7514-7525. PubMed ID: 31466449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapamycin analogs with differential binding specificity permit orthogonal control of protein activity.
    Bayle JH; Grimley JS; Stankunas K; Gestwicki JE; Wandless TJ; Crabtree GR
    Chem Biol; 2006 Jan; 13(1):99-107. PubMed ID: 16426976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design and implementation of a chemically inducible heterotrimerization system.
    Wu HD; Kikuchi M; Dagliyan O; Aragaki AK; Nakamura H; Dokholyan NV; Umehara T; Inoue T
    Nat Methods; 2020 Sep; 17(9):928-936. PubMed ID: 32747768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.
    Inobe T; Nukina N
    J Biosci Bioeng; 2016 Jul; 122(1):40-6. PubMed ID: 26777239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Tension Probe for In Vitro Bioassays.
    Kim SB; Fujii R; Miller S; Tanabe M
    Methods Mol Biol; 2022; 2524():91-103. PubMed ID: 35821465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization.
    Xu T; Johnson CA; Gestwicki JE; Kumar A
    Nat Protoc; 2010 Nov; 5(11):1831-43. PubMed ID: 21030958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP.
    Karginov AV; Zou Y; Shirvanyants D; Kota P; Dokholyan NV; Young DD; Hahn KM; Deiters A
    J Am Chem Soc; 2011 Jan; 133(3):420-3. PubMed ID: 21162531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals.
    Luker KE; Smith MC; Luker GD; Gammon ST; Piwnica-Worms H; Piwnica-Worms D
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12288-93. PubMed ID: 15284440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos.
    Ando H; Furuta T; Tsien RY; Okamoto H
    Nat Genet; 2001 Aug; 28(4):317-25. PubMed ID: 11479592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo.
    Mootz HD; Blum ES; Tyszkiewicz AB; Muir TW
    J Am Chem Soc; 2003 Sep; 125(35):10561-9. PubMed ID: 12940738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and application of light-switchable arylazopyrazole rapamycin analogs.
    Courtney TM; Horst TJ; Hankinson CP; Deiters A
    Org Biomol Chem; 2019 Sep; 17(36):8348-8353. PubMed ID: 31469140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.