These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34609855)

  • 1. A Passive Fuel Cell Fed with an Electrically Rechargeable Liquid Fuel.
    Shi X; Dai Y; Esan OC; Huo X; An L; Zhao T
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48795-48800. PubMed ID: 34609855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulation of Electrode Composition for Effective Water Management in Fuel Cells Fed with an Electrically Rechargeable Liquid Fuel.
    Shi X; Huo X; Esan OC; Dai Y; An L; Zhao TS
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18600-18606. PubMed ID: 35420776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel energy storage system incorporating electrically rechargeable liquid fuels as the storage medium.
    Jiang H; Wei L; Fan X; Xu J; Shyy W; Zhao T
    Sci Bull (Beijing); 2019 Feb; 64(4):270-280. PubMed ID: 36659717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hybrid Redox-Mediated Zinc-Air Fuel Cell for Scalable and Sustained Power Generation.
    Song Y; Xia L; Salla M; Xi S; Fu W; Wang W; Gao M; Huang S; Huang S; Wang X; Yu X; Niu T; Zhang Y; Wang S; Han M; Ni M; Wang Q; Zhang H
    Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202314796. PubMed ID: 38391058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanopore Confinement of Electrocatalysts Optimizing Triple Transport for an Ultrahigh-Power-Density Zinc-Air Fuel Cell with Robust Stability.
    Zhou T; Shan H; Yu H; Zhong C; Ge J; Zhang N; Chu W; Yan W; Xu Q; Wu H; Wu C; Xie Y
    Adv Mater; 2020 Nov; 32(47):e2003251. PubMed ID: 33073405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypophosphites as Eco-Compatible Fuels for Membrane-Free Direct Liquid Fuel Cells.
    Wang R; Wu M; Haller S; Métivier P; Wang Y; Xia Y
    Chemistry; 2018 Jul; 24(41):10310-10314. PubMed ID: 29736950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membraneless, room-temperature, direct borohydride/cerium fuel cell with power density of over 0.25 W/cm2.
    Da Mota N; Finkelstein DA; Kirtland JD; Rodriguez CA; Stroock AD; Abruña HD
    J Am Chem Soc; 2012 Apr; 134(14):6076-9. PubMed ID: 22455318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode.
    Mink JE; Hussain MM
    ACS Nano; 2013 Aug; 7(8):6921-7. PubMed ID: 23899322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the Design of Electrolyte Materials for Electrically Rechargeable Zinc-Air Batteries.
    Liu X; Fan X; Liu B; Ding J; Deng Y; Han X; Zhong C; Hu W
    Adv Mater; 2021 Aug; 33(31):e2006461. PubMed ID: 34050684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical polarization analysis for optimization of external operation parameters in zinc fuel cells.
    Sangeetha T; Yan WM; Chen PT; Yang CJ; Huang KD
    RSC Adv; 2020 Aug; 10(48):28807-28818. PubMed ID: 35520036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible and Lightweight Fuel Cell with High Specific Power Density.
    Ning F; He X; Shen Y; Jin H; Li Q; Li D; Li S; Zhan Y; Du Y; Jiang J; Yang H; Zhou X
    ACS Nano; 2017 Jun; 11(6):5982-5991. PubMed ID: 28605195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Flexible Microsupercapacitor with Integral Photocatalytic Fuel Cell for Self-Charging.
    Qiu M; Sun P; Cui G; Tong Y; Mai W
    ACS Nano; 2019 Jul; 13(7):8246-8255. PubMed ID: 31244031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives.
    Fu J; Cano ZP; Park MG; Yu A; Fowler M; Chen Z
    Adv Mater; 2017 Feb; 29(7):. PubMed ID: 27892635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interchangeable Biomass Fuels for Paper-Based Microfluidic Fuel Cells: Finding Their Power Density Limits.
    Lima ALD; Rocha PM; Silva AC; Alves Fernandes J; Martins CA
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):11895-11905. PubMed ID: 36848672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc-Air Batteries.
    Chen X; Zhou Z; Karahan HE; Shao Q; Wei L; Chen Y
    Small; 2018 Nov; 14(44):e1801929. PubMed ID: 30160051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. V
    Rao Y; Li W; Chen S; Yue Q; Zhang Y; Kang Y
    Small; 2022 Apr; 18(15):e2104411. PubMed ID: 35233951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A small portable proton exchange membrane fuel cell and hydrogen generator for medical applications.
    Adlhart OJ; Rohonyi P; Modroukas D; Driller J
    ASAIO J; 1997; 43(3):214-9. PubMed ID: 9152494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layered Oxide Cathodes for Sodium-Ion Batteries: Storage Mechanism, Electrochemistry, and Techno-economics.
    Zuo W; Innocenti A; Zarrabeitia M; Bresser D; Yang Y; Passerini S
    Acc Chem Res; 2023 Feb; 56(3):284-296. PubMed ID: 36696961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic voltammetry electrodeposition of well-dispersed Pd nanoparticles on carbon paper as a flow-through anode for microfluidic direct formate fuel cells.
    Zhang T; Zhu X; Ye DD; Chen R; Zhou Y; Liao Q
    Nanoscale; 2020 Oct; 12(39):20270-20278. PubMed ID: 33000821
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.