These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 34609872)

  • 21. Structural insights into the interactions of xpt riboswitch with novel guanine analogues: a molecular dynamics simulation study.
    Jain SS; Sonavane UB; Uppuladinne MV; McLaughlin EC; Wang W; Black S; Joshi RR
    J Biomol Struct Dyn; 2015; 33(2):234-43. PubMed ID: 24404773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TPP riboswitch aptamer: Role of Mg
    Padhi S; Pradhan M; Bung N; Roy A; Bulusu G
    J Mol Graph Model; 2019 May; 88():282-291. PubMed ID: 30818079
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches.
    Wacker A; Buck J; Richter C; Schwalbe H; Wöhnert J
    RNA Biol; 2012 May; 9(5):672-80. PubMed ID: 22647526
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Force field dependence of riboswitch dynamics.
    Hanke CA; Gohlke H
    Methods Enzymol; 2015; 553():163-91. PubMed ID: 25726465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ligand-Induced Stabilization of a Duplex-like Architecture Is Crucial for the Switching Mechanism of the SAM-III Riboswitch.
    Suresh G; Srinivasan H; Nanda S; Priyakumar UD
    Biochemistry; 2016 Jun; 55(24):3349-60. PubMed ID: 27249101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain.
    Gilbert SD; Stoddard CD; Wise SJ; Batey RT
    J Mol Biol; 2006 Jun; 359(3):754-68. PubMed ID: 16650860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tertiary Interactions in the Unbound Guanine-Sensing Riboswitch Focus Functional Conformational Variability on the Binding Site.
    Hanke CA; Gohlke H
    J Chem Inf Model; 2017 Nov; 57(11):2822-2832. PubMed ID: 29019403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical Validation of a Third Guanidine Riboswitch Class in Bacteria.
    Sherlock ME; Breaker RR
    Biochemistry; 2017 Jan; 56(2):359-363. PubMed ID: 28001372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cooperative binding of bivalent ligands yields new insights into the guanidine-II riboswitch.
    Steuer J; Sinn M; Eble F; Rütschlin S; Böttcher T; Hartig JS; Peter C
    NAR Genom Bioinform; 2024 Sep; 6(3):lqae132. PubMed ID: 39323654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation.
    Jenkins JL; Krucinska J; McCarty RM; Bandarian V; Wedekind JE
    J Biol Chem; 2011 Jul; 286(28):24626-37. PubMed ID: 21592962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biochemical Validation of a Second Guanidine Riboswitch Class in Bacteria.
    Sherlock ME; Malkowski SN; Breaker RR
    Biochemistry; 2017 Jan; 56(2):352-358. PubMed ID: 28001368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations.
    Hu G; Ma A; Wang J
    J Chem Inf Model; 2017 Apr; 57(4):918-928. PubMed ID: 28345904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and dynamics of the deoxyguanosine-sensing riboswitch studied by NMR-spectroscopy.
    Wacker A; Buck J; Mathieu D; Richter C; Wöhnert J; Schwalbe H
    Nucleic Acids Res; 2011 Aug; 39(15):6802-12. PubMed ID: 21576236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pairing interactions between nucleobases and ligands in aptamer:ligand complexes of riboswitches: crystal structure analysis, classification, optimal structures, and accurate interaction energies.
    Seelam PP; Mitra A; Sharma P
    RNA; 2019 Oct; 25(10):1274-1290. PubMed ID: 31315914
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Atomic-scale characterization of conformational changes in the preQ₁ riboswitch aptamer upon ligand binding.
    Petrone PM; Dewhurst J; Tommasi R; Whitehead L; Pomerantz AK
    J Mol Graph Model; 2011 Sep; 30():179-85. PubMed ID: 21831681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamical characterization and multiple unbinding paths of two PreQ
    Hu G; Zhang Y; Yu Z; Cui T; Cui W
    Phys Chem Chem Phys; 2023 Sep; 25(35):24004-24015. PubMed ID: 37646322
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformational Dynamics of thiM Riboswitch To Understand the Gene Regulation Mechanism Using Markov State Modeling and the Residual Fluctuation Network Approach.
    Kesherwani M; N H V K; Velmurugan D
    J Chem Inf Model; 2018 Aug; 58(8):1638-1651. PubMed ID: 29939019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamics simulation on the Thermosinus carboxydivorans pfl ZTP riboswitch by ligand binding.
    Yu-Nan H; Kang W; Yu S; Xiao-Jun X; Yan W; Xing-Ao L; Ting-Ting S
    Biochem Biophys Res Commun; 2022 Oct; 627():184-190. PubMed ID: 36044800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of ground-state structure and Mg2+ binding on folding kinetics of the guanine-sensing riboswitch aptamer domain.
    Buck J; Wacker A; Warkentin E; Wöhnert J; Wirmer-Bartoschek J; Schwalbe H
    Nucleic Acids Res; 2011 Dec; 39(22):9768-78. PubMed ID: 21890900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of Escherichia coli thiamine pyrophosphate-sensing riboswitch in the apo state.
    Lee HK; Lee YT; Fan L; Wilt HM; Conrad CE; Yu P; Zhang J; Shi G; Ji X; Wang YX; Stagno JR
    Structure; 2023 Jul; 31(7):848-859.e3. PubMed ID: 37253356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.