These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 34609891)
21. Discontinuous contact line motion of evaporating particle-laden droplet on superhydrophobic surfaces. Yamada Y; Horibe A Phys Rev E; 2018 Apr; 97(4-1):043113. PubMed ID: 29758695 [TBL] [Abstract][Full Text] [Related]
22. Controlled particle placement through convective and capillary assembly. Malaquin L; Kraus T; Schmid H; Delamarche E; Wolf H Langmuir; 2007 Nov; 23(23):11513-21. PubMed ID: 17910483 [TBL] [Abstract][Full Text] [Related]
23. Malleable Patterns from the Evaporation of a Colloidal Liquid Bridge: Coffee Ring to the Scallop Shell. Chattopadhyay A; Sampathirao SR; Hegde O; Basu S Langmuir; 2022 May; 38(18):5590-5602. PubMed ID: 35486815 [TBL] [Abstract][Full Text] [Related]
24. Contact Line Dynamics during the Evaporation of Extended Colloidal Thin Films: Influence of Liquid Polarity and Particle Size. Ghosh UU; Chakraborty M; De S; Chakraborty S; DasGupta S Langmuir; 2016 Dec; 32(48):12790-12798. PubMed ID: 27802599 [TBL] [Abstract][Full Text] [Related]
26. Fast evaporation of spreading droplets of colloidal suspensions. Maki KL; Kumar S Langmuir; 2011 Sep; 27(18):11347-63. PubMed ID: 21834573 [TBL] [Abstract][Full Text] [Related]
27. Harnessing complex fluid interfaces to control colloidal assembly and deposition. Zhao M; Luo W; Yong X J Colloid Interface Sci; 2019 Mar; 540():602-611. PubMed ID: 30685683 [TBL] [Abstract][Full Text] [Related]
28. Effect of Particle Concentration on Surfactant-Induced Alteration of the Contact Line Deposition in Evaporating Sessile Droplets. Inanlu MJ; Shojaan B; Farhadi J; Bazargan V Langmuir; 2021 Mar; 37(8):2658-2666. PubMed ID: 33522826 [TBL] [Abstract][Full Text] [Related]
29. Influence of particle shape on bending rigidity of colloidal monolayer membranes and particle deposition during droplet evaporation in confined geometries. Yunker PJ; Gratale M; Lohr MA; Still T; Lubensky TC; Yodh AG Phys Rev Lett; 2012 Jun; 108(22):228303. PubMed ID: 23003662 [TBL] [Abstract][Full Text] [Related]
30. Effects of particle shape on growth dynamics at edges of evaporating drops of colloidal suspensions. Yunker PJ; Lohr MA; Still T; Borodin A; Durian DJ; Yodh AG Phys Rev Lett; 2013 Jan; 110(3):035501. PubMed ID: 23373933 [TBL] [Abstract][Full Text] [Related]
31. Wettability of Complex Fluids and Surfactant Capped Nanoparticle-Induced Quasi-Universal Wetting Behavior. Harikrishnan AR; Dhar P; Agnihotri PK; Gedupudi S; Das SK J Phys Chem B; 2017 Jun; 121(24):6081-6095. PubMed ID: 28585819 [TBL] [Abstract][Full Text] [Related]
32. Tricoupled hybrid lattice Boltzmann model for nonisothermal drying of colloidal suspensions in micropore structures. Qin F; Mazloomi Moqaddam A; Del Carro L; Kang Q; Brunschwiler T; Derome D; Carmeliet J Phys Rev E; 2019 May; 99(5-1):053306. PubMed ID: 31212433 [TBL] [Abstract][Full Text] [Related]
33. Characterizing the Microparticles Deposition Structure and its Photonic Nature in Surfactant-Laden Evaporating Colloidal Sessile Droplets. Tiwari A; Lee SJ; Garg DK; Shin S; Thokchom AK Langmuir; 2024 Apr; 40(16):8711-8720. PubMed ID: 38608175 [TBL] [Abstract][Full Text] [Related]
34. Formation of Deposition Patterns Induced by the Evaporation of the Restricted Liquid. Wang F; Wu M; Man X; Yuan Q Langmuir; 2020 Jul; 36(29):8520-8526. PubMed ID: 32610906 [TBL] [Abstract][Full Text] [Related]
35. Wetting dynamics and particle deposition for an evaporating colloidal drop: a lattice Boltzmann study. Joshi AS; Sun Y Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041401. PubMed ID: 21230271 [TBL] [Abstract][Full Text] [Related]
36. Control of the particle distribution in inkjet printing through an evaporation-driven sol-gel transition. Talbot EL; Yang L; Berson A; Bain CD ACS Appl Mater Interfaces; 2014 Jun; 6(12):9572-83. PubMed ID: 24889140 [TBL] [Abstract][Full Text] [Related]