BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 34610011)

  • 1. Resistance to a CRISPR-based gene drive at an evolutionarily conserved site is revealed by mimicking genotype fixation.
    Fuchs S; Garrood WT; Beber A; Hammond A; Galizi R; Gribble M; Morselli G; Hui TJ; Willis K; Kranjc N; Burt A; Crisanti A; Nolan T
    PLoS Genet; 2021 Oct; 17(10):e1009740. PubMed ID: 34610011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Next-generation gene drive for population modification of the malaria vector mosquito,
    Carballar-Lejarazú R; Ogaugwu C; Tushar T; Kelsey A; Pham TB; Murphy J; Schmidt H; Lee Y; Lanzaro GC; James AA
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22805-22814. PubMed ID: 32839345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae.
    Simoni A; Hammond AM; Beaghton AK; Galizi R; Taxiarchi C; Kyrou K; Meacci D; Gribble M; Morselli G; Burt A; Nolan T; Crisanti A
    Nat Biotechnol; 2020 Sep; 38(9):1054-1060. PubMed ID: 32393821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito.
    Hammond AM; Kyrou K; Bruttini M; North A; Galizi R; Karlsson X; Kranjc N; Carpi FM; D'Aurizio R; Crisanti A; Nolan T
    PLoS Genet; 2017 Oct; 13(10):e1007039. PubMed ID: 28976972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes.
    Kyrou K; Hammond AM; Galizi R; Kranjc N; Burt A; Beaghton AK; Nolan T; Crisanti A
    Nat Biotechnol; 2018 Dec; 36(11):1062-1066. PubMed ID: 30247490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic identification of plausible pathways to potential harm via problem formulation for investigational releases of a population suppression gene drive to control the human malaria vector Anopheles gambiae in West Africa.
    Connolly JB; Mumford JD; Fuchs S; Turner G; Beech C; North AR; Burt A
    Malar J; 2021 Mar; 20(1):170. PubMed ID: 33781254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting Conserved Sequences Circumvents the Evolution of Resistance in a Viral Gene Drive against Human Cytomegalovirus.
    Walter M; Perrone R; Verdin E
    J Virol; 2021 Jul; 95(15):e0080221. PubMed ID: 34011551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility.
    North AR; Burt A; Godfray HCJ
    BMC Biol; 2020 Aug; 18(1):98. PubMed ID: 32782000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of off-target effects in CRISPR-based gene drives in the human malaria mosquito.
    Garrood WT; Kranjc N; Petri K; Kim DY; Guo JA; Hammond AM; Morianou I; Pattanayak V; Joung JK; Crisanti A; Simoni A
    Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 34050017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field.
    Hammond A; Pollegioni P; Persampieri T; North A; Minuz R; Trusso A; Bucci A; Kyrou K; Morianou I; Simoni A; Nolan T; Müller R; Crisanti A
    Nat Commun; 2021 Jul; 12(1):4589. PubMed ID: 34321476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing non-autonomous antimalarial gene drive effectors using self-eliminating drivers in the African mosquito vector Anopheles gambiae.
    Ellis DA; Avraam G; Hoermann A; Wyer CAS; Ong YX; Christophides GK; Windbichler N
    PLoS Genet; 2022 Jun; 18(6):e1010244. PubMed ID: 35653396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement.
    Hoermann A; Tapanelli S; Capriotti P; Del Corsano G; Masters EK; Habtewold T; Christophides GK; Windbichler N
    Elife; 2021 Apr; 10():. PubMed ID: 33845943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinformatic and literature assessment of toxicity and allergenicity of a CRISPR-Cas9 engineered gene drive to control Anopheles gambiae the mosquito vector of human malaria.
    Qureshi A; Connolly JB
    Malar J; 2023 Aug; 22(1):234. PubMed ID: 37580703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance analysis of novel toxin-antidote CRISPR gene drive systems.
    Champer J; Kim IK; Champer SE; Clark AG; Messer PW
    BMC Biol; 2020 Mar; 18(1):27. PubMed ID: 32164660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cas9-mediated maternal effect and derived resistance alleles in a gene-drive strain of the African malaria vector mosquito, Anopheles gambiae.
    Carballar-Lejarazú R; Tushar T; Pham TB; James AA
    Genetics; 2022 May; 221(2):. PubMed ID: 35389492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-CRISPR Anopheles mosquitoes inhibit gene drive spread under challenging behavioural conditions in large cages.
    D'Amato R; Taxiarchi C; Galardini M; Trusso A; Minuz RL; Grilli S; Somerville AGT; Shittu D; Khalil AS; Galizi R; Crisanti A; Simoni A; Müller R
    Nat Commun; 2024 Feb; 15(1):952. PubMed ID: 38296981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-conserved sequences in the genomes of highly diverse Anopheles mosquitoes, with implications for malaria vector control.
    O'Loughlin SM; Forster AJ; Fuchs S; Dottorini T; Nolan T; Crisanti A; Burt A
    G3 (Bethesda); 2021 Jun; 11(6):. PubMed ID: 33730159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control.
    Su MP; Georgiades M; Bagi J; Kyrou K; Crisanti A; Albert JT
    Parasit Vectors; 2020 Oct; 13(1):507. PubMed ID: 33028410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Considerations for first field trials of low-threshold gene drive for malaria vector control.
    Connolly JB; Burt A; Christophides G; Diabate A; Habtewold T; Hancock PA; James AA; Kayondo JK; Lwetoijera DW; Manjurano A; McKemey AR; Santos MR; Windbichler N; Randazzo F
    Malar J; 2024 May; 23(1):156. PubMed ID: 38773487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution in situ analysis of Cas9 germline transcript distributions in gene-drive Anopheles mosquitoes.
    Terradas G; Hermann A; James AA; McGinnis W; Bier E
    G3 (Bethesda); 2022 Jan; 12(1):. PubMed ID: 34791161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.