BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34610011)

  • 41. Articulating ethical principles guiding Target Malaria's engagement strategy.
    Roberts AJ; Thizy D
    Malar J; 2022 Feb; 21(1):35. PubMed ID: 35123487
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Resistance to natural and synthetic gene drive systems.
    Price TAR; Windbichler N; Unckless RL; Sutter A; Runge JN; Ross PA; Pomiankowski A; Nuckolls NL; Montchamp-Moreau C; Mideo N; Martin OY; Manser A; Legros M; Larracuente AM; Holman L; Godwin J; Gemmell N; Courret C; Buchman A; Barrett LG; Lindholm AK
    J Evol Biol; 2020 Oct; 33(10):1345-1360. PubMed ID: 32969551
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment.
    López Del Amo V; Bishop AL; Sánchez C HM; Bennett JB; Feng X; Marshall JM; Bier E; Gantz VM
    Nat Commun; 2020 Jan; 11(1):352. PubMed ID: 31953404
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Double drives and private alleles for localised population genetic control.
    Willis K; Burt A
    PLoS Genet; 2021 Mar; 17(3):e1009333. PubMed ID: 33755671
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Driving down malaria transmission with engineered gene drives.
    Garrood WT; Cuber P; Willis K; Bernardini F; Page NM; Haghighat-Khah RE
    Front Genet; 2022; 13():891218. PubMed ID: 36338968
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Developing standard operating procedures for gene drive research in disease vector mosquitoes.
    Adelman ZN; Pledger D; Myles KM
    Pathog Glob Health; 2017 Dec; 111(8):436-447. PubMed ID: 29350584
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Performance characteristics allow for confinement of a CRISPR toxin-antidote gene drive for population suppression in a reaction-diffusion model.
    Zhang S; Champer J
    Proc Biol Sci; 2024 Jun; 291(2025):20240500. PubMed ID: 38889790
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design and analysis of CRISPR-based underdominance toxin-antidote gene drives.
    Champer J; Champer SE; Kim IK; Clark AG; Messer PW
    Evol Appl; 2021 Apr; 14(4):1052-1069. PubMed ID: 33897820
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exploiting a Y chromosome-linked Cas9 for sex selection and gene drive.
    Gamez S; Chaverra-Rodriguez D; Buchman A; Kandul NP; Mendez-Sanchez SC; Bennett JB; Sánchez C HM; Yang T; Antoshechkin I; Duque JE; Papathanos PA; Marshall JM; Akbari OS
    Nat Commun; 2021 Dec; 12(1):7202. PubMed ID: 34893590
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modelling daisy quorum drive: A short-term bridge across engineered fitness valleys.
    de Haas FJH; Kläy L; Débarre F; Otto SP
    PLoS Genet; 2024 May; 20(5):e1011262. PubMed ID: 38753875
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Making waves: Comparative analysis of gene drive spread characteristics in a continuous space model.
    Pan M; Champer J
    Mol Ecol; 2023 Oct; 32(20):5673-5694. PubMed ID: 37694511
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A homing rescue gene drive with multiplexed gRNAs reaches high frequency in cage populations but generates functional resistance.
    Hou S; Chen J; Feng R; Xu X; Liang N; Champer J
    J Genet Genomics; 2024 Apr; ():. PubMed ID: 38599514
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chemical Controllable Gene Drive in
    Chae D; Lee J; Lee N; Park K; Moon SJ; Kim HH
    ACS Synth Biol; 2020 Sep; 9(9):2362-2377. PubMed ID: 32786353
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The potential for a CRISPR gene drive to eradicate or suppress globally invasive social wasps.
    Lester PJ; Bulgarella M; Baty JW; Dearden PK; Guhlin J; Kean JM
    Sci Rep; 2020 Jul; 10(1):12398. PubMed ID: 32709966
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluating strategies for reversing CRISPR-Cas9 gene drives.
    Vella MR; Gunning CE; Lloyd AL; Gould F
    Sci Rep; 2017 Sep; 7(1):11038. PubMed ID: 28887462
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evolution of Resistance Against CRISPR/Cas9 Gene Drive.
    Unckless RL; Clark AG; Messer PW
    Genetics; 2017 Feb; 205(2):827-841. PubMed ID: 27941126
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cleave and Rescue gamete killers create conditions for gene drive in plants.
    Oberhofer G; Johnson ML; Ivy T; Antoshechkin I; Hay BA
    Nat Plants; 2024 Jun; 10(6):936-953. PubMed ID: 38886522
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gene drive and resilience through renewal with next generation
    Oberhofer G; Ivy T; Hay BA
    Proc Natl Acad Sci U S A; 2020 Apr; 117(16):9013-9021. PubMed ID: 32245808
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mathematical modeling of self-contained CRISPR gene drive reversal systems.
    Heffel MG; Finnigan GC
    Sci Rep; 2019 Dec; 9(1):20050. PubMed ID: 31882576
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Integral gene drives for population replacement.
    Nash A; Urdaneta GM; Beaghton AK; Hoermann A; Papathanos PA; Christophides GK; Windbichler N
    Biol Open; 2019 Jan; 8(1):. PubMed ID: 30498016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.