These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 34610076)

  • 1. Stress-responsive rhodamine bioconjugates for membrane-potential-independent mitochondrial live-cell imaging and tracking.
    Mukherjee T; Regar R; Soppina V; Kanvah S
    Org Biomol Chem; 2021 Dec; 19(46):10090-10096. PubMed ID: 34610076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondria Penetrating Peptide-Conjugated TAMRA for Live-Cell Long-Term Tracking.
    Zhao T; Liu X; Singh S; Liu X; Zhang Y; Sawada J; Komatsu M; Belfield KD
    Bioconjug Chem; 2019 Sep; 30(9):2312-2316. PubMed ID: 31433175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Brightness and Stability of Si-Rhodamine for Super-Resolution Imaging of Mitochondria in Living Cells.
    Song Y; Zhang X; Shen Z; Yang W; Wei J; Li S; Wang X; Li X; He Q; Zhang S; Zhang Q; Gao B
    Anal Chem; 2020 Sep; 92(18):12137-12144. PubMed ID: 32844652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-Infrared Fluorescent Probes for Imaging of Intracellular Mg
    Murata O; Shindo Y; Ikeda Y; Iwasawa N; Citterio D; Oka K; Hiruta Y
    Anal Chem; 2020 Jan; 92(1):966-974. PubMed ID: 31724392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging Reversible Mitochondrial Membrane Potential Dynamics with a Masked Rhodamine Voltage Reporter.
    Klier PEZ; Martin JG; Miller EW
    J Am Chem Soc; 2021 Mar; 143(11):4095-4099. PubMed ID: 33710896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence Measurement of Mitochondrial Membrane Potential Changes in Cultured Cells.
    Nicholls DG
    Methods Mol Biol; 2018; 1782():121-135. PubMed ID: 29850997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioothogonally applicable, π-extended rhodamines for super-resolution microscopy imaging for intracellular proteins.
    Egyed A; Kormos A; Söveges B; Németh K; Kele P
    Bioorg Med Chem; 2020 Jan; 28(1):115218. PubMed ID: 31796371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoactivation of silicon rhodamines via a light-induced protonation.
    Frei MS; Hoess P; Lampe M; Nijmeijer B; Kueblbeck M; Ellenberg J; Wadepohl H; Ries J; Pitsch S; Reymond L; Johnsson K
    Nat Commun; 2019 Oct; 10(1):4580. PubMed ID: 31594948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-depth fluorescence imaging using a two-photon FRET system for mitochondrial pH in live cells and tissues.
    Chang MJ; Kim K; Park KS; Kang JS; Lim CS; Kim HM; Kang C; Lee MH
    Chem Commun (Camb); 2018 Dec; 54(96):13531-13534. PubMed ID: 30431633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of mitochondrial membrane potential and reactive oxygen species in live rat cortical neurons.
    Joshi DC; Bakowska JC
    J Vis Exp; 2011 May; (51):. PubMed ID: 21654619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De Novo Designed Self-Assembling Rhodamine Probe for Real-Time, Long-Term and Quantitative Live-Cell Nanoscopy.
    Zhang J; Shi H; Huang C; Mei L; Guo Q; Cheng K; Wu P; Su D; Chen Q; Gan S; Wing Chan CK; Shi J; Chen JL; Jonathan Choi CH; Yao SQ; Chen XK; Tang BZ; He J; Sun H
    ACS Nano; 2023 Feb; 17(4):3632-3644. PubMed ID: 36744992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conjugates of a photoactivated rhodamine with biopolymers for cell staining.
    Zaitsev SY; Shaposhnikov MN; Solovyeva DO; Solovyeva VV; Rizvanov AA
    ScientificWorldJournal; 2014; 2014():285405. PubMed ID: 25383365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rhodamine-labeled citalopram analogue as a high-affinity fluorescent probe for the serotonin transporter.
    Zhang P; Jørgensen TN; Loland CJ; Newman AH
    Bioorg Med Chem Lett; 2013 Jan; 23(1):323-6. PubMed ID: 23168018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kidney Imaging: Intravital Microscopy.
    Hato T; Winfree S; Dagher PC
    Methods Mol Biol; 2018; 1763():129-136. PubMed ID: 29476494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells.
    Dickinson BC; Chang CJ
    J Am Chem Soc; 2008 Jul; 130(30):9638-9. PubMed ID: 18605728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single design strategy for dual sensitive pH probe with a suitable range to map pH in living cells.
    Yu KK; Hou JT; Li K; Yao Q; Yang J; Wu MY; Xie YM; Yu XQ
    Sci Rep; 2015 Oct; 5():15540. PubMed ID: 26486180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life cell quantification of mitochondrial membrane potential at the single organelle level.
    Distelmaier F; Koopman WJ; Testa ER; de Jong AS; Swarts HG; Mayatepek E; Smeitink JA; Willems PH
    Cytometry A; 2008 Feb; 73(2):129-38. PubMed ID: 18163486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondria-Immobilized Unimolecular Fluorescent Probe for Multiplexing Imaging of Living Cancer Cells.
    Zhu N; Guo X; Pang S; Chang Y; Liu X; Shi Z; Feng S
    Anal Chem; 2020 Aug; 92(16):11103-11110. PubMed ID: 32662262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green-Emitting Rhodamine Dyes for Vital Labeling of Cell Organelles Using STED Super-Resolution Microscopy.
    Grimm F; Nizamov S; Belov VN
    Chembiochem; 2019 Sep; 20(17):2248-2254. PubMed ID: 31050112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general highly efficient synthesis of biocompatible rhodamine dyes and probes for live-cell multicolor nanoscopy.
    Bucevičius J; Gerasimaitė R; Kiszka KA; Pradhan S; Kostiuk G; Koenen T; Lukinavičius G
    Nat Commun; 2023 Mar; 14(1):1306. PubMed ID: 36894547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.