These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34610218)

  • 1. Impedance fluctuation and steam pop occurrence during radiofrequency current ablation: An experimental in vitro model.
    Olszewski R; Ptaszyński P; Cygankiewicz I; Kaczmarek K
    Adv Clin Exp Med; 2021 Oct; 30(10):1051-1056. PubMed ID: 34610218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedance decrement indexes for avoiding steam-pop during bipolar radiofrequency ablation: An experimental study using a dual-bath preparation.
    Saitoh O; Oikawa A; Sugai A; Chinushi M
    J Cardiovasc Electrophysiol; 2020 Dec; 31(12):3302-3310. PubMed ID: 32981132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impedance-decline-guide power control long application time bipolar radiofrequency catheter ablation.
    Saitoh O; Kasai T; Fuse K; Oikawa A; Furushima H; Chinushi M
    J Cardiovasc Electrophysiol; 2022 Dec; 33(12):2538-2545. PubMed ID: 36135613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steam pops during irrigated radiofrequency ablation: feasibility of impedance monitoring for prevention.
    Seiler J; Roberts-Thomson KC; Raymond JM; Vest J; Delacretaz E; Stevenson WG
    Heart Rhythm; 2008 Oct; 5(10):1411-6. PubMed ID: 18929327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Incidence of Audible Steam Pops Is Increased and Unpredictable With the ThermoCool® Surround Flow Catheter During Left Atrial Catheter Ablation: A Prospective Observational Study.
    Theis C; Rostock T; Mollnau H; Sonnenschein S; Himmrich E; Kämpfner D; Ocete BQ; Bock K; Münzel T; Konrad T
    J Cardiovasc Electrophysiol; 2015 Sep; 26(9):956-962. PubMed ID: 26062031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence of steam pops during irrigated RF ablation: novel insights from microwave radiometry.
    Koruth JS; Dukkipati S; Gangireddy S; McCarthy J; Spencer D; Weinberg AD; Miller MA; D'Avila A; Reddy VY
    J Cardiovasc Electrophysiol; 2013 Nov; 24(11):1271-7. PubMed ID: 23751084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiofrequency ablation using a novel insulated-tip ablation catheter can create uniform lesions comparable in size to conventional irrigated ablation catheters while using a fraction of the energy and irrigation.
    Aryana A; Irastorza RM; Berjano E; Cohen RJ; Kraus J; Haghighi-Mood A; Reddy VY; d'Avila A
    J Cardiovasc Electrophysiol; 2022 Jun; 33(6):1146-1156. PubMed ID: 35322477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lesion Size and Safety Comparison Between the Novel Flex Tip on the FlexAbility Ablation Catheter and the Solid Tips on the ThermoCool and ThermoCool SF Ablation Catheters.
    Winterfield JR; Jensen J; Gilbert T; Marchlinski F; Natale A; Packer D; Reddy V; Mahapatra S; Wilber DJ
    J Cardiovasc Electrophysiol; 2016 Jan; 27(1):102-9. PubMed ID: 26359632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Baseline Impedance in Radiofrequency Delivery on Lesion Characteristics and the Relationship Between Impedance and Steam Pops.
    Qu L; Guo M; Sun M; Wang R; Zhang N; Li X
    Front Cardiovasc Med; 2022; 9():872961. PubMed ID: 35571193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contact-force recovery can predict cardiac perforation during radiofrequency ablation.
    Nazeri A; Ganapathy A; Massumi A; Massumi M; Constantine G; Raz S; Razavi M
    Pacing Clin Electrophysiol; 2014 Sep; 37(9):1129-32. PubMed ID: 24797921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-Controlled Radiofrequency Ablation Using Irrigated Catheters: Maximizing Ventricular Lesion Dimensions While Reducing Steam-Pop Formation.
    Leshem E; Zilberman I; Barkagan M; Shapira-Daniels A; Sroubek J; Govari A; Buxton AE; Anter E
    JACC Clin Electrophysiol; 2020 Jan; 6(1):83-93. PubMed ID: 31971910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of Tissue Electric and Ultrasound Characteristics to Predict and Prevent Steam-Generated Cavitation During High-Power Radiofrequency Ablation.
    Nguyen DT; Zipse M; Borne RT; Zheng L; Tzou WS; Sauer WH
    JACC Clin Electrophysiol; 2018 Apr; 4(4):491-500. PubMed ID: 30067489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Safety verification of a novel irrigation catheter with flexible tip of laser-cut kerfs and contact force sensor.
    Yamaguchi J; Takigawa M; Goya M; Yamamoto T; Ikenouchi T; Iwakawa H; Negishi M; Goto K; Shigeta T; Nishimura T; Takamiya T; Tao S; Miyazaki S; Sasano T
    Pacing Clin Electrophysiol; 2023 Dec; 46(12):1536-1545. PubMed ID: 37957924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic signal emission monitoring as a novel method to predict steam pops during radiofrequency ablation: preliminary observations.
    Chik WWB; Kosobrodov R; Bhaskaran A; Barry MAT; Nguyen DT; Pouliopoulos J; Byth K; Sivagangabalan G; Thomas SP; Ross DL; McEwan A; Kovoor P; Thiagalingam A
    J Cardiovasc Electrophysiol; 2015 Apr; 26(4):440-447. PubMed ID: 25516233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RF electrode-tissue coverage significantly influences steam pop incidence and lesion size.
    Bourier F; Popa M; Kottmaier M; Maurer S; Bahlke F; Telishevska M; Lengauer S; Koch-Büttner K; Kornmayer M; Risse E; Brkic A; Reents T; Hessling G; Deisenhofer I
    J Cardiovasc Electrophysiol; 2021 Jun; 32(6):1594-1599. PubMed ID: 33928696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of tip design and thermocouple location on the efficacy and safety of radiofrequency application.
    Yamaguchi J; Takigawa M; Goya M; Martin C; Amemiya M; Yamamoto T; Nishimura T; Nakamura R; Shirai Y; Tao S; Miyazaki S; Takahashi Y; Sasano T
    J Interv Card Electrophysiol; 2023 Jun; 66(4):885-896. PubMed ID: 35451737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics and optimal ablation settings of a novel, contact-force sensing and local impedance-enabled catheter in an ex vivo perfused swine ventricle model.
    Tsutsui K; Kawano D; Mori H; Kato R; Ikeda Y; Sumitomo N; Fukaya H; Iwanaga S; Nakano S; Muramatsu T; Matsumoto K
    J Cardiovasc Electrophysiol; 2021 Dec; 32(12):3187-3194. PubMed ID: 34559441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact-force recovery predicts the absence of cardiac perforation during steam pops.
    Ganapathy AV; Nazeri A; Ashton J; Ganapathy KS; Safavi-Naeini P; Saeed M; Rasekh A; Razavi M
    J Interv Card Electrophysiol; 2021 Jun; 61(1):181-186. PubMed ID: 32533277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ablation with an internally irrigated radiofrequency catheter: learning how to avoid steam pops.
    Cooper JM; Sapp JL; Tedrow U; Pellegrini CP; Robinson D; Epstein LM; Stevenson WG
    Heart Rhythm; 2004 Sep; 1(3):329-33. PubMed ID: 15851179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of baseline pool impedance on lesion metrics and steam pops in catheter ablation.
    Takigawa M; Yamamoto T; Amemiya M; Martin CA; Ikenouchi T; Yamaguchi J; Negishi M; Goto K; Shigeta T; Nishimura T; Tao S; Miyazaki S; Goya M; Sasano T
    J Cardiovasc Electrophysiol; 2023 Aug; 34(8):1671-1680. PubMed ID: 37337433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.