These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34610288)

  • 1. Pharmacological characterization of a novel negative allosteric modulator of NMDA receptors, UBP792.
    Sapkota K; Burnell ES; Irvine MW; Fang G; Gawande DY; Dravid SM; Jane DE; Monaghan DT
    Neuropharmacology; 2021 Dec; 201():108818. PubMed ID: 34610288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism and properties of positive allosteric modulation of N-methyl-d-aspartate receptors by 6-alkyl 2-naphthoic acid derivatives.
    Sapkota K; Irvine MW; Fang G; Burnell ES; Bannister N; Volianskis A; Culley GR; Dravid SM; Collingridge GL; Jane DE; Monaghan DT
    Neuropharmacology; 2017 Oct; 125():64-79. PubMed ID: 28709671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel family of negative and positive allosteric modulators of NMDA receptors.
    Costa BM; Irvine MW; Fang G; Eaves RJ; Mayo-Martin MB; Skifter DA; Jane DE; Monaghan DT
    J Pharmacol Exp Ther; 2010 Dec; 335(3):614-21. PubMed ID: 20858708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the structural requirements for N-methyl-D-aspartate receptor positive and negative allosteric modulators based on 2-naphthoic acid.
    Irvine MW; Fang G; Sapkota K; Burnell ES; Volianskis A; Costa BM; Culley G; Collingridge GL; Monaghan DT; Jane DE
    Eur J Med Chem; 2019 Feb; 164():471-498. PubMed ID: 30622023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A single-channel mechanism for pharmacological potentiation of GluN1/GluN2A NMDA receptors.
    Chopra DA; Sapkota K; Irvine MW; Fang G; Jane DE; Monaghan DT; Dravid SM
    Sci Rep; 2017 Jul; 7(1):6933. PubMed ID: 28761055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Negative Allosteric Modulator Selective for GluN2C/2D-Containing NMDA Receptors Inhibits Synaptic Transmission in Hippocampal Interneurons.
    Swanger SA; Vance KM; Acker TM; Zimmerman SS; DiRaddo JO; Myers SJ; Bundgaard C; Mosley CA; Summer SL; Menaldino DS; Jensen HS; Liotta DC; Traynelis SF
    ACS Chem Neurosci; 2018 Feb; 9(2):306-319. PubMed ID: 29043770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The NMDA receptor intracellular C-terminal domains reciprocally interact with allosteric modulators.
    Sapkota K; Dore K; Tang K; Irvine M; Fang G; Burnell ES; Malinow R; Jane DE; Monaghan DT
    Biochem Pharmacol; 2019 Jan; 159():140-153. PubMed ID: 30503374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct GluN1 and GluN2 Structural Determinants for Subunit-Selective Positive Allosteric Modulation of
    Strong KL; Epplin MP; Ogden KK; Burger PB; Kaiser TM; Wilding TJ; Kusumoto H; Camp CR; Shaulsky G; Bhattacharya S; Perszyk RE; Menaldino DS; McDaniel MJ; Zhang J; Le P; Banke TG; Hansen KB; Huettner JE; Liotta DC; Traynelis SF
    ACS Chem Neurosci; 2021 Jan; 12(1):79-98. PubMed ID: 33326224
    [No Abstract]   [Full Text] [Related]  

  • 9. Structural determinants and mechanism of action of a GluN2C-selective NMDA receptor positive allosteric modulator.
    Khatri A; Burger PB; Swanger SA; Hansen KB; Zimmerman S; Karakas E; Liotta DC; Furukawa H; Snyder JP; Traynelis SF
    Mol Pharmacol; 2014 Nov; 86(5):548-60. PubMed ID: 25205677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PTC-174, a positive allosteric modulator of NMDA receptors containing GluN2C or GluN2D subunits.
    Yi F; Rouzbeh N; Hansen KB; Xu Y; Fanger CM; Gordon E; Paschetto K; Menniti FS; Volkmann RA
    Neuropharmacology; 2020 Aug; 173():107971. PubMed ID: 31987864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negative allosteric modulation of GluN1/GluN3 NMDA receptors.
    Zhu Z; Yi F; Epplin MP; Liu D; Summer SL; Mizu R; Shaulsky G; XiangWei W; Tang W; Burger PB; Menaldino DS; Myers SJ; Liotta DC; Hansen KB; Yuan H; Traynelis SF
    Neuropharmacology; 2020 Oct; 176():108117. PubMed ID: 32389749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors.
    Kvist T; Greenwood JR; Hansen KB; Traynelis SF; Bräuner-Osborne H
    Neuropharmacology; 2013 Dec; 75():324-36. PubMed ID: 23973313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-activity relationships for allosteric NMDA receptor inhibitors based on 2-naphthoic acid.
    Costa BM; Irvine MW; Fang G; Eaves RJ; Mayo-Martin MB; Laube B; Jane DE; Monaghan DT
    Neuropharmacology; 2012 Mar; 62(4):1730-6. PubMed ID: 22155206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological modulation of NMDA receptor activity and the advent of negative and positive allosteric modulators.
    Monaghan DT; Irvine MW; Costa BM; Fang G; Jane DE
    Neurochem Int; 2012 Sep; 61(4):581-92. PubMed ID: 22269804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-channel properties of N-methyl-D-aspartate receptors containing chimaeric GluN2A/GluN2D subunits.
    O'Leary T; Wyllie DJ
    Biochem Soc Trans; 2009 Dec; 37(Pt 6):1347-54. PubMed ID: 19909274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional and pharmacological properties of triheteromeric GluN1/2B/2D NMDA receptors.
    Yi F; Bhattacharya S; Thompson CM; Traynelis SF; Hansen KB
    J Physiol; 2019 Nov; 597(22):5495-5514. PubMed ID: 31541561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits.
    Lind GE; Mou TC; Tamborini L; Pomper MG; De Micheli C; Conti P; Pinto A; Hansen KB
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6942-E6951. PubMed ID: 28760974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 7-Methoxyderivative of tacrine is a 'foot-in-the-door' open-channel blocker of GluN1/GluN2 and GluN1/GluN3 NMDA receptors with neuroprotective activity in vivo.
    Kaniakova M; Kleteckova L; Lichnerova K; Holubova K; Skrenkova K; Korinek M; Krusek J; Smejkalova T; Korabecny J; Vales K; Soukup O; Horak M
    Neuropharmacology; 2018 Sep; 140():217-232. PubMed ID: 30099049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights into assembly and function of GluN1-2C, GluN1-2A-2C, and GluN1-2D NMDARs.
    Chou TH; Kang H; Simorowski N; Traynelis SF; Furukawa H
    Mol Cell; 2022 Dec; 82(23):4548-4563.e4. PubMed ID: 36309015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of AICP as a GluN2C-Selective
    Jessen M; Frederiksen K; Yi F; Clausen RP; Hansen KB; Bräuner-Osborne H; Kilburn P; Damholt A
    Mol Pharmacol; 2017 Aug; 92(2):151-161. PubMed ID: 28588066
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.