BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 34610564)

  • 21. Making waves: Wastewater surveillance of SARS-CoV-2 in an endemic future.
    Wu F; Lee WL; Chen H; Gu X; Chandra F; Armas F; Xiao A; Leifels M; Rhode SF; Wuertz S; Thompson J; Alm EJ
    Water Res; 2022 Jul; 219():118535. PubMed ID: 35605390
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SARS-CoV-2 RNA in urban wastewater samples to monitor the COVID-19 pandemic in Lombardy, Italy (March-June 2020).
    Castiglioni S; Schiarea S; Pellegrinelli L; Primache V; Galli C; Bubba L; Mancinelli F; Marinelli M; Cereda D; Ammoni E; Pariani E; Zuccato E; Binda S
    Sci Total Environ; 2022 Feb; 806(Pt 4):150816. PubMed ID: 34627901
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A critical assessment of SARS-CoV-2 in aqueous environment: Existence, detection, survival, wastewater-based surveillance, inactivation methods, and effective management of COVID-19.
    Parida VK; Saidulu D; Bhatnagar A; Gupta AK; Afzal MS
    Chemosphere; 2023 Jun; 327():138503. PubMed ID: 36965534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wastewater monitoring of SARS-CoV-2 RNA at K-12 schools: comparison to pooled clinical testing data.
    Kim S; Boehm AB
    PeerJ; 2023; 11():e15079. PubMed ID: 36967994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Technical framework for wastewater-based epidemiology of SARS-CoV-2.
    Wu J; Wang Z; Lin Y; Zhang L; Chen J; Li P; Liu W; Wang Y; Yao C; Yang K
    Sci Total Environ; 2021 Oct; 791():148271. PubMed ID: 34130001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of high-frequency in-pipe SARS-CoV-2 wastewater-based surveillance to concurrent COVID-19 random clinical testing on a public U.S. university campus.
    Wright J; Driver EM; Bowes DA; Johnston B; Halden RU
    Sci Total Environ; 2022 May; 820():152877. PubMed ID: 34998780
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-term monitoring of SARS-COV-2 RNA in wastewater in Brazil: A more responsive and economical approach.
    Claro ICM; Cabral AD; Augusto MR; Duran AFA; Graciosa MCP; Fonseca FLA; Speranca MA; Bueno RF
    Water Res; 2021 Sep; 203():117534. PubMed ID: 34388493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A phenomenological neural network powered by the National Wastewater Surveillance System for estimation of silent COVID-19 infections.
    Tang S; Cao Y
    Sci Total Environ; 2023 Dec; 902():166024. PubMed ID: 37541490
    [TBL] [Abstract][Full Text] [Related]  

  • 29. COVID-19 wastewater surveillance in rural communities: Comparison of lagoon and pumping station samples.
    D'Aoust PM; Towhid ST; Mercier É; Hegazy N; Tian X; Bhatnagar K; Zhang Z; Naughton CC; MacKenzie AE; Graber TE; Delatolla R
    Sci Total Environ; 2021 Dec; 801():149618. PubMed ID: 34418622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A case study of a community-organized wastewater surveillance in a small community: correlating weekly reported COVID-19 cases with SARS-CoV-2 RNA concentrations during fall 2020 to summer 2021 in Yarmouth, ME.
    Brooks YM; Gryskwicz B; Sidaway E; Shelley B; Coroi L; Downing M; Downing T; McDonnell S; Ostrye D; Hoop K; Parrish G
    J Water Health; 2023 Mar; 21(3):329-342. PubMed ID: 37338313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance.
    Ahmed W; Simpson SL; Bertsch PM; Bibby K; Bivins A; Blackall LL; Bofill-Mas S; Bosch A; Brandão J; Choi PM; Ciesielski M; Donner E; D'Souza N; Farnleitner AH; Gerrity D; Gonzalez R; Griffith JF; Gyawali P; Haas CN; Hamilton KA; Hapuarachchi HC; Harwood VJ; Haque R; Jackson G; Khan SJ; Khan W; Kitajima M; Korajkic A; La Rosa G; Layton BA; Lipp E; McLellan SL; McMinn B; Medema G; Metcalfe S; Meijer WG; Mueller JF; Murphy H; Naughton CC; Noble RT; Payyappat S; Petterson S; Pitkänen T; Rajal VB; Reyneke B; Roman FA; Rose JB; Rusiñol M; Sadowsky MJ; Sala-Comorera L; Setoh YX; Sherchan SP; Sirikanchana K; Smith W; Steele JA; Sabburg R; Symonds EM; Thai P; Thomas KV; Tynan J; Toze S; Thompson J; Whiteley AS; Wong JCC; Sano D; Wuertz S; Xagoraraki I; Zhang Q; Zimmer-Faust AG; Shanks OC
    Sci Total Environ; 2022 Jan; 805():149877. PubMed ID: 34818780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients.
    Chen Y; Chen L; Deng Q; Zhang G; Wu K; Ni L; Yang Y; Liu B; Wang W; Wei C; Yang J; Ye G; Cheng Z
    J Med Virol; 2020 Jul; 92(7):833-840. PubMed ID: 32243607
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using Wastewater Surveillance to Compare COVID-19 Outbreaks during the Easter Holidays over a 2-Year Period in Cape Town, South Africa.
    Mahlangeni N; Street R; Horn S; Mathee A; Mangwana N; Dias S; Sharma JR; Ramharack P; Louw J; Reddy T; Surujlal-Naicker S; Nkambule S; Webster C; Mdhluli M; Gray G; Muller C; Johnson R
    Viruses; 2023 Jan; 15(1):. PubMed ID: 36680203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly socially vulnerable communities exhibit disproportionately increased viral loads as measured in community wastewater.
    Baldwin WM; Dayton RD; Bivins AW; Scott RS; Yurochko AD; Vanchiere JA; Davis T; Arnold CL; Asuncion JET; Bhuiyan MAN; Snead B; Daniel W; Smith DG; Goeders NE; Kevil CG; Carroll J; Murnane KS
    Environ Res; 2023 Apr; 222():115351. PubMed ID: 36709030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19.
    Jones DL; Baluja MQ; Graham DW; Corbishley A; McDonald JE; Malham SK; Hillary LS; Connor TR; Gaze WH; Moura IB; Wilcox MH; Farkas K
    Sci Total Environ; 2020 Dec; 749():141364. PubMed ID: 32836117
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantifying the relationship between SARS-CoV-2 wastewater concentrations and building-level COVID-19 prevalence at an isolation residence using a passive sampling approach.
    Acer PT; Kelly LM; Lover AA; Butler CS
    medRxiv; 2022 Apr; ():. PubMed ID: 35441165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification and quantification of bioactive compounds suppressing SARS-CoV-2 signals in wastewater-based epidemiology surveillance.
    Bayati M; Hsieh HY; Hsu SY; Li C; Rogers E; Belenchia A; Zemmer SA; Blanc T; LePage C; Klutts J; Reynolds M; Semkiw E; Johnson HY; Foley T; Wieberg CG; Wenzel J; Lyddon T; LePique M; Rushford C; Salcedo B; Young K; Graham M; Suarez R; Ford A; Lei Z; Sumner L; Mooney BP; Wei X; Greenlief CM; Johnson MC; Lin CH
    Water Res; 2022 Aug; 221():118824. PubMed ID: 35830746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monitoring of SARS-CoV-2 in sewersheds with low COVID-19 cases using a passive sampling technique.
    Li J; Ahmed W; Metcalfe S; Smith WJM; Tscharke B; Lynch P; Sherman P; Vo PHN; Kaserzon SL; Simpson SL; McCarthy DT; Thomas KV; Mueller JF; Thai P
    Water Res; 2022 Jun; 218():118481. PubMed ID: 35477063
    [TBL] [Abstract][Full Text] [Related]  

  • 39. City-level SARS-CoV-2 sewage surveillance.
    Yaniv K; Shagan M; Lewis YE; Kramarsky-Winter E; Weil M; Indenbaum V; Elul M; Erster O; Brown AS; Mendelson E; Mannasse B; Shirazi R; Lakkakula S; Miron O; Rinott E; Baibich RG; Bigler I; Malul M; Rishti R; Brenner A; Friedler E; Gilboa Y; Sabach S; Alfiya Y; Cheruti U; Nadav Davidovich ; Moran-Gilad J; Berchenko Y; Bar-Or I; Kushmaro A
    Chemosphere; 2021 Nov; 283():131194. PubMed ID: 34467943
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A simple SEIR-V model to estimate COVID-19 prevalence and predict SARS-CoV-2 transmission using wastewater-based surveillance data.
    Phan T; Brozak S; Pell B; Gitter A; Xiao A; Mena KD; Kuang Y; Wu F
    Sci Total Environ; 2023 Jan; 857(Pt 1):159326. PubMed ID: 36220466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.