These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34611189)

  • 1. Detecting spiral wave tips using deep learning.
    Lilienkamp H; Lilienkamp T
    Sci Rep; 2021 Oct; 11(1):19767. PubMed ID: 34611189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spiral-wave turbulence and its control in the presence of inhomogeneities in four mathematical models of cardiac tissue.
    Shajahan TK; Nayak AR; Pandit R
    PLoS One; 2009; 4(3):e4738. PubMed ID: 19270753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous termination of chaotic spiral wave dynamics in human cardiac ion channel models.
    Aron M; Herzog S; Parlitz U; Luther S; Lilienkamp T
    PLoS One; 2019; 14(8):e0221401. PubMed ID: 31461472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dreaming of Electrical Waves: Generative Modeling of Cardiac Excitation Waves using Diffusion Models.
    Baranwal T; Lebert J; Christoph J
    ArXiv; 2024 Jun; ():. PubMed ID: 38883235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of three-dimensional scroll waves in excitable media from two-dimensional observations using deep neural networks.
    Lebert J; Mittal M; Christoph J
    Phys Rev E; 2023 Jan; 107(1-1):014221. PubMed ID: 36797900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Features of Chaotic Transients in Excitable Media Governed by Spiral and Scroll Waves.
    Lilienkamp T; Christoph J; Parlitz U
    Phys Rev Lett; 2017 Aug; 119(5):054101. PubMed ID: 28949756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse mechano-electrical reconstruction of cardiac excitation wave patterns from mechanical deformation using deep learning.
    Christoph J; Lebert J
    Chaos; 2020 Dec; 30(12):123134. PubMed ID: 33380038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaotic tip trajectories of a single spiral wave in the presence of heterogeneities.
    Lombardo DM; Rappel WJ
    Phys Rev E; 2019 Jun; 99(6-1):062409. PubMed ID: 31330597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scroll wave with negative filament tension in a model of the left ventricle of the human heart and its overdrive pacing.
    Pravdin SF; Epanchintsev TI; Dierckx H; Panfilov AV
    Phys Rev E; 2021 Sep; 104(3-1):034408. PubMed ID: 34654159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Heart Structure on Ventricular Fibrillation in the Rabbit: A Simulation Study.
    Galappaththige SK; Pathmanathan P; Bishop MJ; Gray RA
    Front Physiol; 2019; 10():564. PubMed ID: 31164829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scroll-wave dynamics in human cardiac tissue: lessons from a mathematical model with inhomogeneities and fiber architecture.
    Majumder R; Nayak AR; Pandit R
    PLoS One; 2011 Apr; 6(4):e18052. PubMed ID: 21483682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart.
    Gray RA; Jalife J; Panfilov A; Baxter WT; Cabo C; Davidenko JM; Pertsov AM
    Circulation; 1995 May; 91(9):2454-69. PubMed ID: 7729033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core.
    Beaumont J; Davidenko N; Davidenko JM; Jalife J
    Biophys J; 1998 Jul; 75(1):1-14. PubMed ID: 9649363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotor Localization and Phase Mapping of Cardiac Excitation Waves Using Deep Neural Networks.
    Lebert J; Ravi N; Fenton FH; Christoph J
    Front Physiol; 2021; 12():782176. PubMed ID: 34975536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of pinned scroll waves in cardiac tissues by electric fields in a generic model of three-dimensional excitable media.
    Pan DB; Gao X; Feng X; Pan JT; Zhang H
    Sci Rep; 2016 Feb; 6():21876. PubMed ID: 26905367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spiral-wave dynamics depend sensitively on inhomogeneities in mathematical models of ventricular tissue.
    Shajahan TK; Sinha S; Pandit R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011929. PubMed ID: 17358206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical approach to the drift of the tips of spiral waves in the complex Ginzburg-Landau equation.
    Zhang S; Hu B; Zhang H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016214. PubMed ID: 12636592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two forms of spiral-wave reentry in an ionic model of ischemic ventricular myocardium.
    Xu A; Guevara MR
    Chaos; 1998 Mar; 8(1):157-174. PubMed ID: 12779719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic shortening in the wavelength of electrical waves promotes onset of electrical turbulence in cardiac tissue: An in silico study.
    Zimik S; Pandit R; Majumder R
    PLoS One; 2020; 15(3):e0230214. PubMed ID: 32168323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terminating transient chaos in spatially extended systems.
    Lilienkamp T; Parlitz U
    Chaos; 2020 May; 30(5):051108. PubMed ID: 32491910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.