BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 34611310)

  • 1. Single-cell analysis reveals androgen receptor regulates the ER-to-Golgi trafficking pathway with CREB3L2 to drive prostate cancer progression.
    Hu L; Chen X; Narwade N; Lim MGL; Chen Z; Tennakoon C; Guan P; Chan UI; Zhao Z; Deng M; Xu X; Sung WK; Cheung E
    Oncogene; 2021 Nov; 40(47):6479-6493. PubMed ID: 34611310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Independence of HIF1a and androgen signaling pathways in prostate cancer.
    Tran MGB; Bibby BAS; Yang L; Lo F; Warren AY; Shukla D; Osborne M; Hadfield J; Carroll T; Stark R; Scott H; Ramos-Montoya A; Massie C; Maxwell P; West CML; Mills IG; Neal DE
    BMC Cancer; 2020 May; 20(1):469. PubMed ID: 32450824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of androgen-induced regulator ARD1 inhibits androgen receptor acetylation and prostate tumorigenesis.
    Wang Z; Wang Z; Guo J; Li Y; Bavarva JH; Qian C; Brahimi-Horn MC; Tan D; Liu W
    Proc Natl Acad Sci U S A; 2012 Feb; 109(8):3053-8. PubMed ID: 22315407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The non-canonical mechanism of ER stress-mediated progression of prostate cancer.
    Pachikov AN; Gough RR; Christy CE; Morris ME; Casey CA; LaGrange CA; Bhat G; Kubyshkin AV; Fomochkina II; Zyablitskaya EY; Makalish TP; Golubinskaya EP; Davydenko KA; Eremenko SN; Riethoven JM; Maroli AS; Payne TS; Powers R; Lushnikov AY; Macke AJ; Petrosyan A
    J Exp Clin Cancer Res; 2021 Sep; 40(1):289. PubMed ID: 34521429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth.
    Deng X; Shao G; Zhang HT; Li C; Zhang D; Cheng L; Elzey BD; Pili R; Ratliff TL; Huang J; Hu CD
    Oncogene; 2017 Mar; 36(9):1223-1231. PubMed ID: 27546619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of sLZIP in cyclin D3-mediated negative regulation of androgen receptor transactivation and its involvement in prostate cancer.
    Kim Y; Kim J; Jang SW; Ko J
    Oncogene; 2015 Jan; 34(2):226-36. PubMed ID: 24441043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Androgen modulation of XBP1 is functionally driving part of the AR transcriptional program.
    Stelloo S; Linder S; Nevedomskaya E; Valle-Encinas E; de Rink I; Wessels LFA; van der Poel H; Bergman AM; Zwart W
    Endocr Relat Cancer; 2020 Feb; 27(2):67-79. PubMed ID: 31804970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrative analysis of AR-mediated transcriptional regulatory network reveals IRF1 as an inhibitor of prostate cancer progression.
    Cheng Y; Wang D; Jiang J; Huang W; Li D; Luo J; Gu W; Mo W; Wang C; Li Y; Gu S; Xu Y
    Prostate; 2020 May; 80(8):640-652. PubMed ID: 32282098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Androgen action in the prostate gland.
    Yadav N; Heemers HV
    Minerva Urol Nefrol; 2012 Mar; 64(1):35-49. PubMed ID: 22402316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional regulation of core autophagy and lysosomal genes by the androgen receptor promotes prostate cancer progression.
    Blessing AM; Rajapakshe K; Reddy Bollu L; Shi Y; White MA; Pham AH; Lin C; Jonsson P; Cortes CJ; Cheung E; La Spada AR; Bast RC; Merchant FA; Coarfa C; Frigo DE
    Autophagy; 2017 Mar; 13(3):506-521. PubMed ID: 27977328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SIRT7 depletion inhibits cell proliferation and androgen-induced autophagy by suppressing the AR signaling in prostate cancer.
    Ding M; Jiang CY; Zhang Y; Zhao J; Han BM; Xia SJ
    J Exp Clin Cancer Res; 2020 Feb; 39(1):28. PubMed ID: 32019578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of an anabolic selective androgen receptor modulator that actively induces death of androgen-independent prostate cancer cells.
    Schmidt A; Meissner RS; Gentile MA; Chisamore MJ; Opas EE; Scafonas A; Cusick TE; Gambone C; Pennypacker B; Hodor P; Perkins JJ; Bai C; Ferraro D; Bettoun DJ; Wilkinson HA; Alves SE; Flores O; Ray WJ
    J Steroid Biochem Mol Biol; 2014 Sep; 143():29-39. PubMed ID: 24565564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target.
    Asim M; Massie CE; Orafidiya F; Pértega-Gomes N; Warren AY; Esmaeili M; Selth LA; Zecchini HI; Luko K; Qureshi A; Baridi A; Menon S; Madhu B; Escriu C; Lyons S; Vowler SL; Zecchini VR; Shaw G; Hessenkemper W; Russell R; Mohammed H; Stefanos N; Lynch AG; Grigorenko E; D'Santos C; Taylor C; Lamb A; Sriranjan R; Yang J; Stark R; Dehm SM; Rennie PS; Carroll JS; Griffiths JR; Tavaré S; Mills IG; McEwan IJ; Baniahmad A; Tilley WD; Neal DE
    J Natl Cancer Inst; 2016 May; 108(5):. PubMed ID: 26657335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth.
    Guo Z; Yang X; Sun F; Jiang R; Linn DE; Chen H; Chen H; Kong X; Melamed J; Tepper CG; Kung HJ; Brodie AM; Edwards J; Qiu Y
    Cancer Res; 2009 Mar; 69(6):2305-13. PubMed ID: 19244107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the effects of androgenic Chinese herbal medicines on androgen receptors and tumor growth in experimental prostate cancer models.
    Zhang ZB; Ip SP; Cho WC; Hu Z; Huang YF; Luo DD; Xian YF; Lin ZX
    J Ethnopharmacol; 2020 Oct; 260():113058. PubMed ID: 32525068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The NLR-related protein NWD1 is associated with prostate cancer and modulates androgen receptor signaling.
    Correa RG; Krajewska M; Ware CF; Gerlic M; Reed JC
    Oncotarget; 2014 Mar; 5(6):1666-82. PubMed ID: 24681825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PAGE4 positivity is associated with attenuated AR signaling and predicts patient survival in hormone-naive prostate cancer.
    Sampson N; Ruiz C; Zenzmaier C; Bubendorf L; Berger P
    Am J Pathol; 2012 Oct; 181(4):1443-54. PubMed ID: 22885105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing the mechanism of ethyl acetate extracts of Semen Impatientis against prostate cancer based on network pharmacology and transcriptomics.
    Hu B; Wang C; Wu Y; Han C; Liu J; Chen R; Wang T
    J Ethnopharmacol; 2024 Aug; 330():118228. PubMed ID: 38643863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ACSS3 represses prostate cancer progression through downregulating lipid droplet-associated protein PLIN3.
    Zhou L; Song Z; Hu J; Liu L; Hou Y; Zhang X; Yang X; Chen K
    Theranostics; 2021; 11(2):841-860. PubMed ID: 33391508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival.
    Tan PY; Chang CW; Chng KR; Wansa KD; Sung WK; Cheung E
    Mol Cell Biol; 2012 Jan; 32(2):399-414. PubMed ID: 22083957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.