These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 34611609)
1. All-polymer indoor photovoltaic modules. Zhang Y; Wang N; Wang Y; Zhang J; Liu J; Wang L iScience; 2021 Oct; 24(10):103104. PubMed ID: 34611609 [TBL] [Abstract][Full Text] [Related]
2. Low-Trap-Density CsPbX Wang M; Wang Q; Zhao J; Xu Y; Wang H; Zhou X; Yang S; Ci Z; Jin Z ACS Appl Mater Interfaces; 2022 Mar; 14(9):11528-11537. PubMed ID: 35192322 [TBL] [Abstract][Full Text] [Related]
3. Investigation of Self-Powered IoT Sensor Nodes for Harvesting Hybrid Indoor Ambient Light and Heat Energy. Xiao H; Qi N; Yin Y; Yu S; Sun X; Xuan G; Liu J; Xiao S; Li Y; Li Y Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112136 [TBL] [Abstract][Full Text] [Related]
4. Br Vacancy Defects Healed Perovskite Indoor Photovoltaic Modules with Certified Power Conversion Efficiency Exceeding 36. Zhang C; Liu C; Gao Y; Zhu S; Chen F; Huang B; Xie Y; Liu Y; Ma M; Wang Z; Wu S; Schropp REI; Mai Y Adv Sci (Weinh); 2022 Nov; 9(33):e2204138. PubMed ID: 36253155 [TBL] [Abstract][Full Text] [Related]
5. Polymer Acceptors Containing B←N Units for Organic Photovoltaics. Zhao R; Liu J; Wang L Acc Chem Res; 2020 Aug; 53(8):1557-1567. PubMed ID: 32692535 [TBL] [Abstract][Full Text] [Related]
6. High-Performance Organic Energy-Harvesting Devices and Modules for Self-Sustainable Power Generation under Ambient Indoor Lighting Environments. Arai R; Furukawa S; Hidaka Y; Komiyama H; Yasuda T ACS Appl Mater Interfaces; 2019 Mar; 11(9):9259-9264. PubMed ID: 30789698 [TBL] [Abstract][Full Text] [Related]
7. Organic indoor light harvesters achieving recorded output power over 500% enhancement under thermal radiated illuminances. Chen Z; Yin H; Wen Z; So SK; Hao X Sci Bull (Beijing); 2021 Aug; 66(16):1641-1648. PubMed ID: 36654298 [TBL] [Abstract][Full Text] [Related]
8. A 3-Fluoropyridine Manipulating the Aggregation and Fibril Network of Donor Polymers for Eco-Friendly Solution-Processed Versatile Organic Solar Cells. Jeon SJ; Yang NG; Kim JY; Kim YC; Lee HS; Moon DK Small; 2023 Sep; 19(38):e2301803. PubMed ID: 37222123 [TBL] [Abstract][Full Text] [Related]
9. Eco-Compatible Solvent-Processed Organic Photovoltaic Cells with Over 16% Efficiency. Hong L; Yao H; Wu Z; Cui Y; Zhang T; Xu Y; Yu R; Liao Q; Gao B; Xian K; Woo HY; Ge Z; Hou J Adv Mater; 2019 Sep; 31(39):e1903441. PubMed ID: 31392768 [TBL] [Abstract][Full Text] [Related]
10. 1 cm Cui Y; Yao H; Zhang T; Hong L; Gao B; Xian K; Qin J; Hou J Adv Mater; 2019 Oct; 31(42):e1904512. PubMed ID: 31490601 [TBL] [Abstract][Full Text] [Related]
11. Slot-Die-Coated Ternary Organic Photovoltaics for Indoor Light Recycling. Farahat ME; Laventure A; Anderson MA; Mainville M; Tintori F; Leclerc M; Ratcliff EL; Welch GC ACS Appl Mater Interfaces; 2020 Sep; 12(39):43684-43693. PubMed ID: 32946216 [TBL] [Abstract][Full Text] [Related]
12. A New Conjugated Polymer that Enables the Integration of Photovoltaic and Light-Emitting Functions in One Device. Xu Y; Cui Y; Yao H; Zhang T; Zhang J; Ma L; Wang J; Wei Z; Hou J Adv Mater; 2021 Jun; 33(22):e2101090. PubMed ID: 33899285 [TBL] [Abstract][Full Text] [Related]
13. Dye-sensitized solar cells under ambient light powering machine learning: towards autonomous smart sensors for the internet of things. Michaels H; Rinderle M; Freitag R; Benesperi I; Edvinsson T; Socher R; Gagliardi A; Freitag M Chem Sci; 2020 Feb; 11(11):2895-2906. PubMed ID: 34122790 [TBL] [Abstract][Full Text] [Related]
14. Indoor photovoltaics awaken the world's first solar cells. Yan B; Liu X; Lu W; Feng M; Yan HJ; Li Z; Liu S; Wang C; Hu JS; Xue DJ Sci Adv; 2022 Dec; 8(49):eadc9923. PubMed ID: 36475800 [TBL] [Abstract][Full Text] [Related]
15. Indoor Organic Photovoltaics for Self-Sustaining IoT Devices: Progress, Challenges and Practicalization. Jahandar M; Kim S; Lim DC ChemSusChem; 2021 Sep; 14(17):3449-3474. PubMed ID: 34056847 [TBL] [Abstract][Full Text] [Related]
16. Nonhalogenated Solvent-Processed High-Performance Indoor Photovoltaics Made of New Conjugated Terpolymers with Optimized Monomer Compositions. Park SH; Kwon NY; Kim HJ; Cho E; Kang H; Harit AK; Woo HY; Yoon HJ; Cho MJ; Choi DH ACS Appl Mater Interfaces; 2021 Mar; 13(11):13487-13498. PubMed ID: 33710873 [TBL] [Abstract][Full Text] [Related]
17. An Adaptive TE-PV Hybrid Energy Harvesting System for Self-Powered IoT Sensor Applications. Mishu MK; Rokonuzzaman M; Pasupuleti J; Shakeri M; Rahman KS; Binzaid S; Tiong SK; Amin N Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33917665 [TBL] [Abstract][Full Text] [Related]
18. High-Efficiency Photovoltaic Modules on a Chip for Millimeter-Scale Energy Harvesting. Moon E; Lee I; Blaauw D; Phillips JD Prog Photovolt; 2019 Jun; 27(6):540-546. PubMed ID: 34354330 [TBL] [Abstract][Full Text] [Related]
19. Dual-Junction GaAs Photovoltaics for Low Irradiance Wireless Power Transfer in Submillimeter-Scale Sensor Nodes. Moon E; Barrow M; Lim J; Blaauw D; Phillips JD IEEE J Photovolt; 2020 Nov; 10(6):1721-1726. PubMed ID: 33224555 [TBL] [Abstract][Full Text] [Related]
20. Ultra-Stable ITO-Free Organic Solar Cells and Modules Processed from Non-Halogenated Solvents under Indoor Illumination. Müller D; Jiang E; Campos Guzmán L; Rivas Lázaro P; Baretzky C; Bogati S; Zimmermann B; Würfel U Small; 2024 Mar; 20(9):e2305437. PubMed ID: 37863807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]