These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34611928)

  • 41. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bisulfite-initiated crosslinking of gelatin methacryloyl hydrogels for embedded 3D bioprinting.
    Bilici Ç; Tatar AG; Şentürk E; Dikyol C; Koç B
    Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35062010
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink.
    Garcia-Cruz MR; Postma A; Frith JE; Meagher L
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting.
    Wang Z; Kumar H; Tian Z; Jin X; Holzman JF; Menard F; Kim K
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):26859-26869. PubMed ID: 30024722
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stepwise Control of Crosslinking in a One-Pot System for Bioprinting of Low-Density Bioinks.
    Soliman BG; Lindberg GCJ; Jungst T; Hooper GJ; Groll J; Woodfield TBF; Lim KS
    Adv Healthc Mater; 2020 Aug; 9(15):e1901544. PubMed ID: 32323473
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications.
    Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecularly cleavable bioinks facilitate high-performance digital light processing-based bioprinting of functional volumetric soft tissues.
    Wang M; Li W; Hao J; Gonzales A; Zhao Z; Flores RS; Kuang X; Mu X; Ching T; Tang G; Luo Z; Garciamendez-Mijares CE; Sahoo JK; Wells MF; Niu G; Agrawal P; Quiñones-Hinojosa A; Eggan K; Zhang YS
    Nat Commun; 2022 Jun; 13(1):3317. PubMed ID: 35680907
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs.
    Heo DN; Alioglu MA; Wu Y; Ozbolat V; Ayan B; Dey M; Kang Y; Ozbolat IT
    ACS Appl Mater Interfaces; 2020 May; 12(18):20295-20306. PubMed ID: 32274920
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity.
    Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering.
    Kara Özenler A; Distler T; Tihminlioglu F; Boccaccini AR
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36706451
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications.
    Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS
    Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of Irgacure 2959 and lithium phenyl-2,4,6-trimethylbenzoylphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs.
    Xu H; Casillas J; Krishnamoorthy S; Xu C
    Biomed Mater; 2020 Aug; 15(5):055021. PubMed ID: 32438356
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A fluid-supported 3D hydrogel bioprinting method.
    Beh CW; Yew DS; Chai RJ; Chin SY; Seow Y; Hoon SS
    Biomaterials; 2021 Sep; 276():121034. PubMed ID: 34332372
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss.
    Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W
    Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cell encapsulation in gelatin bioink impairs 3D bioprinting resolution.
    Schwartz R; Malpica M; Thompson GL; Miri AK
    J Mech Behav Biomed Mater; 2020 Mar; 103():103524. PubMed ID: 31785543
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting.
    Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ
    J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation.
    Dravid A; McCaughey-Chapman A; Raos B; O'Carroll SJ; Connor B; Svirskis D
    Biomed Mater; 2022 Jun; 17(5):. PubMed ID: 35654031
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rheological characterization of cell-laden alginate-gelatin hydrogels for 3D biofabrication.
    Gregory T; Benhal P; Scutte A; Quashie D; Harrison K; Cargill C; Grandison S; Savitsky MJ; Ramakrishnan S; Ali J
    J Mech Behav Biomed Mater; 2022 Dec; 136():105474. PubMed ID: 36191458
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sonochemical Degradation of Gelatin Methacryloyl to Control Viscoelasticity for Inkjet Bioprinting.
    Lee Y; Park JA; Tuladhar T; Jung S
    Macromol Biosci; 2023 May; 23(5):e2200509. PubMed ID: 36896820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.