These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 34611928)
61. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels. Liu P; Shen H; Zhi Y; Si J; Shi J; Guo L; Shen SG Colloids Surf B Biointerfaces; 2019 Sep; 181():1026-1034. PubMed ID: 31382330 [TBL] [Abstract][Full Text] [Related]
62. 3D Bioprinting of Cell-Laden Hydrogels for Improved Biological Functionality. Hull SM; Brunel LG; Heilshorn SC Adv Mater; 2022 Jan; 34(2):e2103691. PubMed ID: 34672027 [TBL] [Abstract][Full Text] [Related]
63. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related]
64. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds. Yang J; Li Z; Li S; Zhang Q; Zhou X; He C Biomater Sci; 2023 Feb; 11(5):1895-1909. PubMed ID: 36722864 [TBL] [Abstract][Full Text] [Related]
65. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J; Yan M; Wang Y; Fu J; Suo H ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059 [TBL] [Abstract][Full Text] [Related]
66. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035 [TBL] [Abstract][Full Text] [Related]
67. Formulation and characterization of gelatin methacrylamide-hydroxypropyl methacrylate based bioink for bioprinting applications. Kallingal N; Ramakrishnan R; Krishnan V K J Biomater Sci Polym Ed; 2023 Apr; 34(6):768-790. PubMed ID: 36346058 [TBL] [Abstract][Full Text] [Related]
68. Marine Biomaterial-Based Bioinks for Generating 3D Printed Tissue Constructs. Zhang X; Kim GJ; Kang MG; Lee JK; Seo JW; Do JT; Hong K; Cha JM; Shin SR; Bae H Mar Drugs; 2018 Dec; 16(12):. PubMed ID: 30518062 [TBL] [Abstract][Full Text] [Related]
69. Tissue-Specific Hydrogels for Three-Dimensional Printing and Potential Application in Peripheral Nerve Regeneration. Wang T; Han Y; Wu Z; Qiu S; Rao Z; Zhao C; Zhu Q; Quan D; Bai Y; Liu X Tissue Eng Part A; 2022 Feb; 28(3-4):161-174. PubMed ID: 34309417 [TBL] [Abstract][Full Text] [Related]
70. High-Resolution 3D Bioprinting of Photo-Cross-linkable Recombinant Collagen to Serve Tissue Engineering Applications. Tytgat L; Dobos A; Markovic M; Van Damme L; Van Hoorick J; Bray F; Thienpont H; Ottevaere H; Dubruel P; Ovsianikov A; Van Vlierberghe S Biomacromolecules; 2020 Oct; 21(10):3997-4007. PubMed ID: 32841006 [TBL] [Abstract][Full Text] [Related]
71. 3D-bioprinting of aortic valve interstitial cells: impact of hydrogel and printing parameters on cell viability. Immohr MB; Dos Santos Adrego F; Teichert HL; Schmidt V; Sugimura Y; Bauer S; Barth M; Lichtenberg A; Akhyari P Biomed Mater; 2022 Nov; 18(1):. PubMed ID: 36322974 [TBL] [Abstract][Full Text] [Related]
73. 3D Bioprinting of Gelatin-Xanthan Gum Composite Hydrogels for Growth of Human Skin Cells. Piola B; Sabbatini M; Gino S; Invernizzi M; Renò F Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008965 [TBL] [Abstract][Full Text] [Related]
74. Volumetric Printing Across Melt Electrowritten Scaffolds Fabricates Multi-Material Living Constructs with Tunable Architecture and Mechanics. Größbacher G; Bartolf-Kopp M; Gergely C; Bernal PN; Florczak S; de Ruijter M; Rodriguez NG; Groll J; Malda J; Jungst T; Levato R Adv Mater; 2023 Aug; 35(32):e2300756. PubMed ID: 37099802 [TBL] [Abstract][Full Text] [Related]
75. Toward Adipose Tissue Engineering Using Thiol-Norbornene Photo-Crosslinkable Gelatin Hydrogels. Van Damme L; Van Hoorick J; Blondeel P; Van Vlierberghe S Biomacromolecules; 2021 Jun; 22(6):2408-2418. PubMed ID: 33950675 [TBL] [Abstract][Full Text] [Related]
76. Synthesis, Characterization, and Digital Light Processing of a Hydrolytically Degradable Hyaluronic Acid Hydrogel. Galarraga JH; Dhand AP; Enzmann BP; Burdick JA Biomacromolecules; 2023 Jan; 24(1):413-425. PubMed ID: 36516973 [TBL] [Abstract][Full Text] [Related]
77. Infiltration from Suspension Systems Enables Effective Modulation of 3D Scaffold Properties in Suspension Bioprinting. Wang C; Honiball JR; Lin J; Xia X; Lau DSA; Chen B; Deng L; Lu WW ACS Appl Mater Interfaces; 2022 Jun; 14(24):27575-27588. PubMed ID: 35674114 [TBL] [Abstract][Full Text] [Related]
78. Multiscale porosity in a 3D printed gellan-gelatin composite for bone tissue engineering. Gupta D; Vashisth P; Bellare J Biomed Mater; 2021 Apr; 16(3):. PubMed ID: 33761468 [TBL] [Abstract][Full Text] [Related]
79. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Rutz AL; Hyland KE; Jakus AE; Burghardt WR; Shah RN Adv Mater; 2015 Mar; 27(9):1607-14. PubMed ID: 25641220 [TBL] [Abstract][Full Text] [Related]
80. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]