These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34612043)

  • 1. Effect of Coordination Environment Surrounding a Single Pt Site on the Liquid-Phase Aerobic Oxidation of 5-Hydroxymethylfurfural.
    Zhu W; Meng Y; Yang C; Zhao J; Wang H; Hu W; Lv G; Wang Y; Deng T; Hou X
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48582-48594. PubMed ID: 34612043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling Natural Halloysite Nanotubes and Bimetallic Pt-Au Alloy Nanoparticles for Highly Efficient and Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid.
    Zhong X; Yuan P; Wei Y; Liu D; Losic D; Li M
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):3949-3960. PubMed ID: 35015494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tandem catalyzing the hydrodeoxygenation of 5-hydroxymethylfurfural over a Ni
    Meng G; Ji K; Zhang W; Kang Y; Wang Y; Zhang P; Wang YG; Li J; Cui T; Sun X; Tan T; Wang D; Li Y
    Chem Sci; 2021 Jan; 12(11):4139-4146. PubMed ID: 34163686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-atom catalysis of CO oxidation using Pt1/FeOx.
    Qiao B; Wang A; Yang X; Allard LF; Jiang Z; Cui Y; Liu J; Li J; Zhang T
    Nat Chem; 2011 Jul; 3(8):634-41. PubMed ID: 21778984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Efficient Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid with Heteropoly Acids and Ionic Liquids.
    Chen R; Xin J; Yan D; Dong H; Lu X; Zhang S
    ChemSusChem; 2019 Jun; 12(12):2715-2724. PubMed ID: 30908861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating the Electronic Metal-Support Interactions in Single-Atom Pt
    Jiang Z; Tian M; Jing M; Chai S; Jian Y; Chen C; Douthwaite M; Zheng L; Ma M; Song W; Liu J; Yu J; He C
    Angew Chem Int Ed Engl; 2022 Jul; 61(28):e202200763. PubMed ID: 35347821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of 2,5-furandicarboxylic acid
    Wadaugsorn K; Lin KY; Kaewchada A; Jaree A
    RSC Adv; 2022 Jun; 12(28):18084-18092. PubMed ID: 35800325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inexpensive but Highly Efficient Co-Mn Mixed-Oxide Catalysts for Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid.
    Rao KTV; Rogers JL; Souzanchi S; Dessbesell L; Ray MB; Xu CC
    ChemSusChem; 2018 Sep; 11(18):3323-3334. PubMed ID: 30006949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of MnO
    Hayashi E; Yamaguchi Y; Kamata K; Tsunoda N; Kumagai Y; Oba F; Hara M
    J Am Chem Soc; 2019 Jan; 141(2):890-900. PubMed ID: 30612429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling the Nature of Pt Single-Atom Catalyst during Electrocatalytic Hydrogen Evolution and Oxygen Reduction Reactions.
    Li J; Banis MN; Ren Z; Adair KR; Doyle-Davis K; Meira DM; Finfrock YZ; Zhang L; Kong F; Sham TK; Li R; Luo J; Sun X
    Small; 2021 Mar; 17(11):e2007245. PubMed ID: 33605070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts.
    Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH
    Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient catalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using bimetallic Pt-Cu alloy nanoparticles as catalysts.
    Cheng X; Li S; Liu S; Xin Y; Yang J; Chen B; Liu H
    Chem Commun (Camb); 2022 Jan; 58(8):1183-1186. PubMed ID: 34981091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective aerobic oxidation of 5-HMF into 2,5-furandicarboxylic acid with Pt catalysts supported on TiO2 - and ZrO2 -based supports.
    Ait Rass H; Essayem N; Besson M
    ChemSusChem; 2015 Apr; 8(7):1206-17. PubMed ID: 25736596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Production of 2,5-Furandicarboxylic Acid via Oxidation of Industrially Sourced Crude 5-Hydroxymethylfurfural.
    Zuo X; Venkitasubramanian P; Martin KJ; Subramaniam B
    ChemSusChem; 2022 Jul; 15(13):e202102050. PubMed ID: 34913609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring the Local Environment of Platinum in Single-Atom Pt
    Jiang D; Yao Y; Li T; Wan G; Pereira-Hernández XI; Lu Y; Tian J; Khivantsev K; Engelhard MH; Sun C; García-Vargas CE; Hoffman AS; Bare SR; Datye AK; Hu L; Wang Y
    Angew Chem Int Ed Engl; 2021 Dec; 60(50):26054-26062. PubMed ID: 34346155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pt Nanoparticles Supported on Nitrogen-Doped-Carbon-Decorated CeO
    Ke C; Li M; Fan G; Yang L; Li F
    Chem Asian J; 2018 Sep; 13(18):2714-2722. PubMed ID: 30020565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of the 2,5-Furandicarboxylic Acid Bio-Monomer From 5-Hydroxymethylfurfural Over a Molybdenum-Vanadium Oxide Catalyst.
    Liu J; Wen S; Wang F; Zhu X; Zeng Z; Yin D
    Front Chem; 2022; 10():853112. PubMed ID: 35372283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leveraging Pt/Ce
    Yang W; Yu H; Wang B; Wang X; Zhang H; Lei D; Lou LL; Yu K; Liu S
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37667-37680. PubMed ID: 35968674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting the Activity of Single-Atom Pt
    Tao Q; Song J; Sun N; Ren Y; Xiang L; Liu S; Kuai L
    Inorg Chem; 2022 Aug; 61(30):11932-11938. PubMed ID: 35848216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability investigation of a high number density Pt
    Duan S; Wang R; Liu J
    Nanotechnology; 2018 May; 29(20):204002. PubMed ID: 29473830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.