BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 34612239)

  • 1. Molecular dynamics study on the inhibition mechanisms of ReACp53 peptide for p53-R175H mutant aggregation.
    Lei J; Cai M; Shen Y; Lin D; Deng X
    Phys Chem Chem Phys; 2021 Oct; 23(40):23032-23041. PubMed ID: 34612239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common cancer mutations R175H and R273H drive the p53 DNA-binding domain towards aggregation-prone conformations.
    Li L; Li X; Tang Y; Lao Z; Lei J; Wei G
    Phys Chem Chem Phys; 2020 May; 22(17):9225-9232. PubMed ID: 32307496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p53 R175H hydrophobic patch and H-bond reorganization observed by MD simulation.
    Thayer KM; Quinn TR
    Biopolymers; 2016 Mar; 105(3):176-85. PubMed ID: 26566695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics and Molecular Mechanisms of p53 Transcriptional Activation.
    Offutt TL; Ieong PU; Demir Ö; Amaro RE
    Biochemistry; 2018 Nov; 57(46):6528-6537. PubMed ID: 30388364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating the Mechanisms of R248Q Mutation-Enhanced p53 Aggregation and Its Inhibition by Resveratrol.
    Liu Q; Li L; Yu Y; Wei G
    J Phys Chem B; 2023 Sep; 127(36):7708-7720. PubMed ID: 37665658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-aggregation and coaggregation of the p53 core fragment with its aggregation gatekeeper variant.
    Lei J; Qi R; Wei G; Nussinov R; Ma B
    Phys Chem Chem Phys; 2016 Mar; 18(11):8098-107. PubMed ID: 26923710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutic potential of ReACp53 targeting mutant p53 protein in CRPC.
    Zhang Y; Xu L; Chang Y; Li Y; Butler W; Jin E; Wang A; Tao Y; Chen X; Liang C; Huang J
    Prostate Cancer Prostatic Dis; 2020 Mar; 23(1):160-171. PubMed ID: 31471556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation-primed molten globule conformers of the p53 core domain provide potential tools for studying p53C aggregation in cancer.
    Pedrote MM; de Oliveira GAP; Felix AL; Mota MF; Marques MA; Soares IN; Iqbal A; Norberto DR; Gomes AMO; Gratton E; Cino EA; Silva JL
    J Biol Chem; 2018 Jul; 293(29):11374-11387. PubMed ID: 29853637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical characterization of p53 core domain aggregates.
    Lima I; Navalkar A; Maji SK; Silva JL; de Oliveira GAP; Cino EA
    Biochem J; 2020 Jan; 477(1):111-120. PubMed ID: 31841126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting the Prion-like Aggregation of Mutant p53 to Combat Cancer.
    Silva JL; Cino EA; Soares IN; Ferreira VF; A P de Oliveira G
    Acc Chem Res; 2018 Jan; 51(1):181-190. PubMed ID: 29260852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relevance of Amorphous and Amyloid-Like Aggregates of the p53 Core Domain to Loss of its DNA-Binding Activity.
    Hibino E; Tenno T; Hiroaki H
    Front Mol Biosci; 2022; 9():869851. PubMed ID: 35558561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Mutation on an Aggregation-Prone Segment of p53: From Monomer to Dimer to Multimer.
    Das A; Makarov DE
    J Phys Chem B; 2016 Nov; 120(45):11665-11673. PubMed ID: 27775362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct modulatory role of RNA in the aggregation of the tumor suppressor protein p53 core domain.
    Kovachev PS; Banerjee D; Rangel LP; Eriksson J; Pedrote MM; Martins-Dinis MMDC; Edwards K; Cordeiro Y; Silva JL; Sanyal S
    J Biol Chem; 2017 Jun; 292(22):9345-9357. PubMed ID: 28420731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the intrinsic aggregation potential of evolutionarily conserved segments in p53.
    Ghosh S; Ghosh D; Ranganathan S; Anoop A; P SK; Jha NN; Padinhateeri R; Maji SK
    Biochemistry; 2014 Sep; 53(38):5995-6010. PubMed ID: 25181279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into Allosteric Mechanisms of the Lung-Enriched p53 Mutants V157F and R158L.
    Lei J; Li X; Cai M; Guo T; Lin D; Deng X; Li Y
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation tendencies in the p53 family are modulated by backbone hydrogen bonds.
    Cino EA; Soares IN; Pedrote MM; de Oliveira GA; Silva JL
    Sci Rep; 2016 Sep; 6():32535. PubMed ID: 27600721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of wild-type p53 core domain into a conformation that mimics a hot-spot mutant.
    Ishimaru D; Maia LF; Maiolino LM; Quesado PA; Lopez PC; Almeida FC; Valente AP; Silva JL
    J Mol Biol; 2003 Oct; 333(2):443-51. PubMed ID: 14529628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic perspectives into the mechanisms of mutation-induced p53-DNA binding loss and inactivation using active perturbation theory: Structural and molecular insights toward the design of potent reactivators in cancer therapy.
    Olotu FA; Soliman MES
    J Cell Biochem; 2019 Jan; 120(1):951-966. PubMed ID: 30160791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From mutational inactivation to aberrant gain-of-function: Unraveling the structural basis of mutant p53 oncogenic transition.
    Olotu FA; Soliman MES
    J Cell Biochem; 2018 Mar; 119(3):2646-2652. PubMed ID: 29058783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. R248Q mutation--Beyond p53-DNA binding.
    Ng JW; Lama D; Lukman S; Lane DP; Verma CS; Sim AY
    Proteins; 2015 Dec; 83(12):2240-50. PubMed ID: 26442703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.