These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34612349)

  • 1. Efficient artificial light-harvesting systems based on aggregation-induced emission in supramolecular gels.
    Ma X; Qiao B; Yue J; Yu J; Geng Y; Lai Y; Feng E; Han X; Liu M
    Soft Matter; 2021 Sep; 17(34):7813-7816. PubMed ID: 34612349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new strategy for constructing artificial light-harvesting systems: supramolecular self-assembly gels with AIE properties.
    Ma X; Yue J; Wang Y; Gao Y; Qiao B; Feng E; Li Z; Ye F; Han X
    Soft Matter; 2021 Jun; 17(23):5666-5670. PubMed ID: 34095929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular polymers based on host-guest interactions for the construction of artificial light-harvesting systems.
    Wang Y; Xu J; Wang R; Liu H; Yu S; Xing LB
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121402. PubMed ID: 35636137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of Artificial Light-Harvesting Systems Based on Aggregation-Induced Emission Type Supramolecular Self-Assembly Metallogels.
    Wang Y; Lai Y; Ren T; Tang J; Gao Y; Geng Y; Zhang J; Ma X
    Langmuir; 2023 Jan; ():. PubMed ID: 36625456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Efficient Artificial Light-Harvesting Systems Constructed in Aqueous Solution Based on Supramolecular Self-Assembly.
    Guo S; Song Y; He Y; Hu XY; Wang L
    Angew Chem Int Ed Engl; 2018 Mar; 57(12):3163-3167. PubMed ID: 29383817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Efficient Artificial Light-Harvesting Systems Constructed in an Aqueous Solution Based on Twisted Cucurbit[14]Uril.
    Luo Y; Zhang W; Ren Q; Tao Z; Xiao X
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):29806-29812. PubMed ID: 35748110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial light-harvesting systems based on supramolecular self-assembly multi-component metallogels.
    Ma X; Wang Y; Lai Y; Ren T; Tang J; Gao Y; Geng Y; Zhang J
    Soft Matter; 2022 Dec; 18(48):9283-9290. PubMed ID: 36458862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembled metallasupramolecular cages towards light harvesting systems for oxidative cyclization.
    Kumar A; Saha R; Mukherjee PS
    Chem Sci; 2021 Mar; 12(14):5319-5329. PubMed ID: 34163765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Artificial Light-Harvesting System Based on Supramolecular Peptide Nanotubes in Water.
    Song Q; Goia S; Yang J; Hall SCL; Staniforth M; Stavros VG; Perrier S
    J Am Chem Soc; 2021 Jan; 143(1):382-389. PubMed ID: 33348987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetraphenylethene-Based Supramolecular Coordination Frameworks with Aggregation-Induced Emission for an Artificial Light-Harvesting System.
    Wang P; Miao X; Meng Y; Wang Q; Wang J; Duan H; Li Y; Li C; Liu J; Cao L
    ACS Appl Mater Interfaces; 2020 May; 12(20):22630-22639. PubMed ID: 32330383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amphiphilicity-Controlled Polychromatic Emissive Supramolecular Self-Assemblies for Highly Sensitive and Efficient Artificial Light-Harvesting Systems.
    Chen XM; Cao KW; Bisoyi HK; Zhang S; Qian N; Guo L; Guo DS; Yang H; Li Q
    Small; 2022 Oct; 18(42):e2204360. PubMed ID: 36135778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switchable Circularly Polarized Luminescence in Supramolecular Gels through Photomodulated FRET.
    Du S; Zhu X; Zhang L; Liu M
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15501-15508. PubMed ID: 33764753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of an Artificial Sequential Light-Harvesting System and White-Light Material Utilizing Supramolecular Gels.
    Tang J; Zhang J; Zhang J; Liang Y; Wei J; Ren T; Han X; Ma X
    Langmuir; 2024 Jun; 40(25):13183-13189. PubMed ID: 38874200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CH
    Muthu C; Vijayan A; Nair VC
    Chem Asian J; 2017 May; 12(9):988-995. PubMed ID: 28301082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Supramolecular Artificial Light-Harvesting System with an Ultrahigh Antenna Effect.
    Li JJ; Chen Y; Yu J; Cheng N; Liu Y
    Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28585340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-location of acceptors as "isolated" or "stacked" energy traps in a supramolecular donor self-assembly: a strategy to wavelength tunable FRET emission.
    Ajayaghosh A; Vijayakumar C; Praveen VK; Babu SS; Varghese R
    J Am Chem Soc; 2006 Jun; 128(22):7174-5. PubMed ID: 16734466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular polymer-directed light-harvesting system based on a stepwise energy transfer cascade.
    Xiao T; Zhang L; Wu H; Qian H; Ren D; Li ZY; Sun XQ
    Chem Commun (Camb); 2021 Jun; 57(47):5782-5785. PubMed ID: 33998620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient artificial light-harvesting system constructed from supramolecular polymers with AIE property.
    Xiao T; Shen Y; Bao C; Diao K; Ren D; Qian H; Zhang L
    RSC Adv; 2021 Sep; 11(48):30041-30045. PubMed ID: 35480273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gel Formed by Self-Assembly of a Urea-Modified Monopyrrolotetrathiafulvalene Derivative Displays Multi-Stimuli Responsiveness and Absorption of Rhodamine B.
    Liu Y; Liu L; Zhu E; Yue M; Gao C; Wu X; Che G; Liu H
    Chempluschem; 2018 Dec; 83(12):1109-1118. PubMed ID: 31950715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature and pH Responsive Light-Harvesting System Based on AIE-Active Microgel for Cell Imaging.
    Fan X; Teng CP; Yeo JCC; Li Z; Wang T; Chen H; Jiang L; Hou X; He C; Liu J
    Macromol Rapid Commun; 2021 Apr; 42(7):e2000716. PubMed ID: 33543517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.