These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34612359)

  • 1. Electrocatalytic hydrogenation of benzoic acids in a proton-exchange membrane reactor.
    Fukazawa A; Shimizu Y; Shida N; Atobe M
    Org Biomol Chem; 2021 Sep; 19(34):7363-7368. PubMed ID: 34612359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogenation of benzoic acid derivatives over Pt/TiO
    Guo M; Kong X; Li C; Yang Q
    Commun Chem; 2021 Apr; 4(1):54. PubMed ID: 36697567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrocatalytic Hydrogenation of Guaiacol in Diverse Electrolytes Using a Stirred Slurry Reactor.
    Wijaya YP; Grossmann-Neuhaeusler T; Dhewangga Putra RD; Smith KJ; Kim CS; Gyenge EL
    ChemSusChem; 2020 Feb; 13(3):629-639. PubMed ID: 31886627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical hydrogenation of enones using a proton-exchange membrane reactor: selectivity and utility.
    Mitsudo K; Inoue H; Niki Y; Sato E; Suga S
    Beilstein J Org Chem; 2022; 18():1055-1061. PubMed ID: 36105727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical Separation of H
    Kurimoto A; Jansonius RP; Huang A; Marelli AM; Dvorak DJ; Hunt C; Berlinguette CP
    Angew Chem Int Ed Engl; 2021 May; 60(21):11937-11942. PubMed ID: 33851491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sonoelectrochemical hydrogenation of safrole: A reactor design, statistical analysis and computational fluid dynamic approach.
    da Paz JA; de Menezes FD; Selva TMG; Navarro M; da Costa JÂP; da Silva RD; Villa AAO; Vilar M
    Ultrason Sonochem; 2020 May; 63():104949. PubMed ID: 31952006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocatalytic Hydrogenation of Oxygenates using Earth-Abundant Transition-Metal Nanoparticles under Mild Conditions.
    Carroll KJ; Burger T; Langenegger L; Chavez S; Hunt ST; Román-Leshkov Y; Brushett FR
    ChemSusChem; 2016 Aug; 9(15):1904-10. PubMed ID: 27337680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An alternative to hydrogenation processes. Electrocatalytic hydrogenation of benzophenone.
    Mozo Mulero C; Sáez A; Iniesta J; Montiel V
    Beilstein J Org Chem; 2018; 14():537-546. PubMed ID: 29623115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape-Control of Pt-Ru Nanocrystals: Tuning Surface Structure for Enhanced Electrocatalytic Methanol Oxidation.
    Huang L; Zhang X; Wang Q; Han Y; Fang Y; Dong S
    J Am Chem Soc; 2018 Jan; 140(3):1142-1147. PubMed ID: 29283565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity-structure correlation of Pt/Ru catalysts for the electrodecomposition of methanol: the importance of RuO(2) and PtRu alloying.
    Wei YC; Liu CW; Wang KW
    Chemphyschem; 2009 Jun; 10(8):1230-7. PubMed ID: 19396843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Electrocatalytic Hydrogenation with a Palladium Membrane Reactor.
    Sherbo RS; Kurimoto A; Brown CM; Berlinguette CP
    J Am Chem Soc; 2019 May; 141(19):7815-7821. PubMed ID: 30998338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PtRu catalysts supported on heteropolyacid and chitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells.
    Cui Z; Li CM; Jiang SP
    Phys Chem Chem Phys; 2011 Sep; 13(36):16349-57. PubMed ID: 21842101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient and practical arene hydrogenation by heterogeneous catalysts under mild conditions.
    Maegawa T; Akashi A; Yaguchi K; Iwasaki Y; Shigetsura M; Monguchi Y; Sajiki H
    Chemistry; 2009 Jul; 15(28):6953-63. PubMed ID: 19514037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly stable and CO-tolerant Pt/Ti0.7W0.3O2 electrocatalyst for proton-exchange membrane fuel cells.
    Wang D; Subban CV; Wang H; Rus E; DiSalvo FJ; Abruña HD
    J Am Chem Soc; 2010 Aug; 132(30):10218-20. PubMed ID: 20662494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of p-substituents on electrochemical CO oxidation by Rh porphyrin-based catalysts.
    Yamazaki S; Yamada Y; Takeda S; Goto M; Ioroi T; Siroma Z; Yasuda K
    Phys Chem Chem Phys; 2010 Aug; 12(31):8968-76. PubMed ID: 20532281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafine PtRu Dilute Alloy Nanodendrites for Enhanced Electrocatalytic Methanol Oxidation.
    Zhang S; Rong H; Yang T; Bai B; Zhang J
    Chemistry; 2020 Mar; 26(18):4025-4031. PubMed ID: 31596524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast preparation of PtRu catalysts supported on carbon nanofibers by the microwave-polyol method and their application to fuel cells.
    Tsuji M; Kubokawa M; Yano R; Miyamae N; Tsuji T; Jun MS; Hong S; Lim S; Yoon SH; Mochida I
    Langmuir; 2007 Jan; 23(2):387-90. PubMed ID: 17209582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles.
    Liu Z; Lee JY; Chen W; Han M; Gan LM
    Langmuir; 2004 Jan; 20(1):181-7. PubMed ID: 15745018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Electrocatalytic Reduction of Furfural to Furfuryl Alcohol in a Microchannel Flow Reactor.
    Cao Y; Noël T
    Org Process Res Dev; 2019 Mar; 23(3):403-408. PubMed ID: 30906184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of higher alcohols from CO2 hydrogenation over a PtRu/Fe2O3 catalyst under supercritical condition.
    He Z; Qian Q; Zhang Z; Meng Q; Zhou H; Jiang Z; Han B
    Philos Trans A Math Phys Eng Sci; 2015 Dec; 373(2057):. PubMed ID: 26574526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.