These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 34612374)
1. Investigating the role of Cu-oxo species in Cu-nitrate formation over Cu-CHA catalysts. Negri C; Martini A; Deplano G; Lomachenko KA; Janssens TVW; Borfecchia E; Berlier G; Bordiga S Phys Chem Chem Phys; 2021 Sep; 23(34):18322-18337. PubMed ID: 34612374 [TBL] [Abstract][Full Text] [Related]
2. Investigating the Low Temperature Formation of Cu Negri C; Hammershøi PS; Janssens TVW; Beato P; Berlier G; Bordiga S Chemistry; 2018 Aug; 24(46):12044-12053. PubMed ID: 30019783 [TBL] [Abstract][Full Text] [Related]
3. Methane Activation on H-ZSM-5 Zeolite with Low Copper Loading. The Nature of Active Sites and Intermediates Identified with the Combination of Spectroscopic Methods. Gabrienko AA; Yashnik SA; Kolganov AA; Sheveleva AM; Arzumanov SS; Fedin MV; Tuna F; Stepanov AG Inorg Chem; 2020 Feb; 59(3):2037-2050. PubMed ID: 31971794 [TBL] [Abstract][Full Text] [Related]
4. Structure and Reactivity of Oxygen-Bridged Diamino Dicopper(II) Complexes in Cu-Ion-Exchanged Chabazite Catalyst for NH Negri C; Selleri T; Borfecchia E; Martini A; Lomachenko KA; Janssens TVW; Cutini M; Bordiga S; Berlier G J Am Chem Soc; 2020 Sep; 142(37):15884-15896. PubMed ID: 32830975 [TBL] [Abstract][Full Text] [Related]
5. Assessing the Influence of Zeolite Composition on Oxygen-Bridged Diamino Dicopper(II) Complexes in Cu-CHA DeNO Martini A; Negri C; Bugarin L; Deplano G; Abasabadi RK; Lomachenko KA; Janssens TVW; Bordiga S; Berlier G; Borfecchia E J Phys Chem Lett; 2022 Jul; 13(26):6164-6170. PubMed ID: 35763262 [TBL] [Abstract][Full Text] [Related]
6. Methane to Methanol: Structure-Activity Relationships for Cu-CHA. Pappas DK; Borfecchia E; Dyballa M; Pankin IA; Lomachenko KA; Martini A; Signorile M; Teketel S; Arstad B; Berlier G; Lamberti C; Bordiga S; Olsbye U; Lillerud KP; Svelle S; Beato P J Am Chem Soc; 2017 Oct; 139(42):14961-14975. PubMed ID: 28945372 [TBL] [Abstract][Full Text] [Related]
7. Elucidating the reaction mechanism of SO Molokova AY; Abasabadi RK; Borfecchia E; Mathon O; Bordiga S; Wen F; Berlier G; Janssens TVW; Lomachenko KA Chem Sci; 2023 Oct; 14(41):11521-11531. PubMed ID: 37886093 [TBL] [Abstract][Full Text] [Related]
8. Copper Pairing in the Mordenite Framework as a Function of the Cu Deplano G; Martini A; Signorile M; Borfecchia E; Crocellà V; Svelle S; Bordiga S Angew Chem Int Ed Engl; 2021 Dec; 60(49):25891-25896. PubMed ID: 34582094 [TBL] [Abstract][Full Text] [Related]
9. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides. Paolucci C; Di Iorio JR; Schneider WF; Gounder R Acc Chem Res; 2020 Sep; 53(9):1881-1892. PubMed ID: 32786332 [TBL] [Abstract][Full Text] [Related]
10. Mobility and Reactivity of Cu Millan R; Cnudde P; van Speybroeck V; Boronat M JACS Au; 2021 Oct; 1(10):1778-1787. PubMed ID: 34723280 [TBL] [Abstract][Full Text] [Related]
11. Improving Copper Active Site Speciation on Cu-Ce/SSZ-13 for Ammonia Oxidation via Si/Al Ratio Modulation. Zhao Y; Yi X; Dou B; Kang R; Bin F ACS Appl Mater Interfaces; 2024 May; 16(20):26088-26098. PubMed ID: 38717977 [TBL] [Abstract][Full Text] [Related]
12. Catalysis in a Cage: Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites. Paolucci C; Parekh AA; Khurana I; Di Iorio JR; Li H; Albarracin Caballero JD; Shih AJ; Anggara T; Delgass WN; Miller JT; Ribeiro FH; Gounder R; Schneider WF J Am Chem Soc; 2016 May; 138(18):6028-48. PubMed ID: 27070199 [TBL] [Abstract][Full Text] [Related]
13. Spectroscopic Definition of a Highly Reactive Site in Cu-CHA for Selective Methane Oxidation: Tuning a Mono-μ-Oxo Dicopper(II) Active Site for Reactivity. Rhoda HM; Plessers D; Heyer AJ; Bols ML; Schoonheydt RA; Sels BF; Solomon EI J Am Chem Soc; 2021 May; 143(19):7531-7540. PubMed ID: 33970624 [TBL] [Abstract][Full Text] [Related]
14. Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: a multivariate XAS/FTIR approach to complexity. Martini A; Borfecchia E; Lomachenko KA; Pankin IA; Negri C; Berlier G; Beato P; Falsig H; Bordiga S; Lamberti C Chem Sci; 2017 Oct; 8(10):6836-6851. PubMed ID: 29147509 [TBL] [Abstract][Full Text] [Related]
15. Influence of Solvent on Selective Catalytic Reduction of Nitrogen Oxides with Ammonia over Cu-CHA Zeolite. Abdul Nasir J; Guan J; Keal TW; Desmoutier AW; Lu Y; Beale AM; Catlow CRA; Sokol AA J Am Chem Soc; 2023 Jan; 145(1):247-259. PubMed ID: 36548055 [TBL] [Abstract][Full Text] [Related]
16. Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios. Giordanino F; Vennestrøm PN; Lundegaard LF; Stappen FN; Mossin S; Beato P; Bordiga S; Lamberti C Dalton Trans; 2013 Sep; 42(35):12741-61. PubMed ID: 23842567 [TBL] [Abstract][Full Text] [Related]
17. Kinetic Monte Carlo Analysis Reveals Non-mean-field Active Site Dynamics in Cu-Zeolite-Catalyzed NO Goswami A; Krishna SH; Gounder R; Schneider WF ACS Catal; 2024 Jun; 14(11):8376-8388. PubMed ID: 38868104 [TBL] [Abstract][Full Text] [Related]
18. Cu-CHA - a model system for applied selective redox catalysis. Borfecchia E; Beato P; Svelle S; Olsbye U; Lamberti C; Bordiga S Chem Soc Rev; 2018 Nov; 47(22):8097-8133. PubMed ID: 30083666 [TBL] [Abstract][Full Text] [Related]