These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34612396)

  • 1. Microscale pH inhomogeneity in frozen NaCl solutions.
    Kataoka S; Harada M; Okada T
    Phys Chem Chem Phys; 2021 Sep; 23(34):18595-18601. PubMed ID: 34612396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ice Confinement-Induced Solubilization and Aggregation of Cyanonaphthol Revealed by Fluorescence Spectroscopy and Lifetime Measurements.
    Muto T; Harada M; Fukuhara G; Okada T
    J Phys Chem B; 2020 May; 124(18):3734-3742. PubMed ID: 32295346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freezing and glass transitions upon cooling and warming and ice/freeze-concentration-solution morphology of emulsified aqueous citric acid.
    Bogdan A; Molina MJ; Tenhu H
    Eur J Pharm Biopharm; 2016 Dec; 109():49-60. PubMed ID: 27664024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of secondary ice in a frozen NaCl freeze-concentrated solution on the extent of methylene blue aggregation.
    Veselý L; Závacká K; Štůsek R; Olbert M; Neděla V; Shalaev E; Heger D
    Int J Pharm; 2024 Jan; 650():123691. PubMed ID: 38072147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freezing of Aqueous Carboxylic Acid Solutions on Ice.
    Moll CJ; Meister K; Versluis J; Bakker HJ
    J Phys Chem B; 2020 Jun; 124(25):5201-5208. PubMed ID: 32414235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vitrification and increase of basicity in between ice I
    Imrichová K; Veselý L; Gasser TM; Loerting T; Neděla V; Heger D
    J Chem Phys; 2019 Jul; 151(1):014503. PubMed ID: 31272163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rise in the pH of an unfrozen solution in ice due to the presence of NaCl and promotion of decomposition of gallic acids owing to a change in the pH.
    Takenaka N; Tanaka M; Okitsu K; Bandow H
    J Phys Chem A; 2006 Sep; 110(36):10628-32. PubMed ID: 16956245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acceleration and Reaction Mechanism of the N-Nitrosation Reaction of Dimethylamine with Nitrite in Ice.
    Kitada K; Suda Y; Takenaka N
    J Phys Chem A; 2017 Jul; 121(29):5383-5388. PubMed ID: 28662583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray Fluorescence Imaging of Frozen Aqueous NaCl Solutions.
    Tokumasu K; Harada M; Okada T
    Langmuir; 2016 Jan; 32(2):527-33. PubMed ID: 26710656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freezing-Facilitated Dehydration Allowing Deposition of ZnO from Aqueous Electrolyte.
    Tokumasu K; Harada M; Okada T
    Chemphyschem; 2017 Feb; 18(4):329-333. PubMed ID: 27933741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Phosphate Buffered Saline (PBS) in Frozen State and after Freeze-Drying.
    Thorat AA; Suryanarayanan R
    Pharm Res; 2019 May; 36(7):98. PubMed ID: 31087169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical Chemistry of the Freezing Process of Atmospheric Aqueous Drops.
    Bogdan A; Molina MJ
    J Phys Chem A; 2017 Apr; 121(16):3109-3116. PubMed ID: 28393522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-Tunable Micro-/Nanofluidic Channels Fabricated by Freezing Aqueous Sucrose.
    Fujino S; Inagawa A; Harada M; Okada T
    ACS Omega; 2019 Aug; 4(8):13570-13576. PubMed ID: 31460486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Excimeric Fluorescence to Study How the Cooling Rate Determines the Behavior of Naphthalenes in Freeze-Concentrated Solutions: Vitrification and Crystallization.
    Ondrušková G; Veselý L; Zezula J; Bachler J; Loerting T; Heger D
    J Phys Chem B; 2020 Nov; 124(46):10556-10566. PubMed ID: 33156630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ice/Water Interface: Zeta Potential, Point of Zero Charge, and Hydrophobicity.
    Drzymala J; Sadowski Z; Holysz L; Chibowski E
    J Colloid Interface Sci; 1999 Dec; 220(2):229-234. PubMed ID: 10607438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand-Specific Dissolution of Iron Oxides in Frozen Solutions.
    Menacherry SPM; Kim K; Lee W; Choi CH; Choi W
    Environ Sci Technol; 2018 Dec; 52(23):13766-13773. PubMed ID: 30395706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of freezing process in situ upon cooling and warming of aqueous solutions.
    Bogdan A; Molina MJ; Tenhu H; Bertel E; Bogdan N; Loerting T
    Sci Rep; 2014 Dec; 4():7414. PubMed ID: 25491562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic nonequilibrium phase change behavior and thermal properties of biological solutions for cryobiology applications.
    Han B; Bischof JC
    J Biomech Eng; 2004 Apr; 126(2):196-203. PubMed ID: 15179849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and Morphology of Liquid Phase in Frozen Aqueous NaCl Probed by Voltammetry and Simulations.
    Fukui Y; Miyagawa A; Qu H; Harada M; Okada T
    Chemphyschem; 2018 Nov; 19(22):3150-3157. PubMed ID: 30259627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryoelectrolysis-electrolytic processes in a frozen physiological saline medium.
    Lugnani F; Macchioro M; Rubinsky B
    PeerJ; 2017; 5():e2810. PubMed ID: 28123904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.