BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34612490)

  • 21. Effects of a hexokinase II deletion on the dynamics of glycolysis in continuous cultures of Saccharomyces cerevisiae.
    Diderich JA; Raamsdonk LM; Kuiper A; Kruckeberg AL; Berden JA; Teixeira de Mattos MJ; van Dam K
    FEMS Yeast Res; 2002 May; 2(2):165-72. PubMed ID: 12702304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosynthesis and Heterologous Production of Mycosporine-Like Amino Acid Palythines.
    Chen M; Rubin GM; Jiang G; Raad Z; Ding Y
    J Org Chem; 2021 Aug; 86(16):11160-11168. PubMed ID: 34006097
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae.
    Verho R; Londesborough J; Penttilä M; Richard P
    Appl Environ Microbiol; 2003 Oct; 69(10):5892-7. PubMed ID: 14532041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The hexokinase 2-dependent glucose signal transduction pathway of Saccharomyces cerevisiae.
    Moreno F; Herrero P
    FEMS Microbiol Rev; 2002 Mar; 26(1):83-90. PubMed ID: 12007644
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of ZnO nanoparticles using the cell extract of the cyanobacterium, Anabaena strain L31 and its conjugation with UV-B absorbing compound shinorine.
    Singh G; Babele PK; Kumar A; Srivastava A; Sinha RP; Tyagi MB
    J Photochem Photobiol B; 2014 Sep; 138():55-62. PubMed ID: 24911272
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway.
    Wahlbom CF; Cordero Otero RR; van Zyl WH; Hahn-Hägerdal B; Jönsson LJ
    Appl Environ Microbiol; 2003 Feb; 69(2):740-6. PubMed ID: 12570990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crabtree/Warburg-like aerobic xylose fermentation by engineered Saccharomyces cerevisiae.
    Lee SB; Tremaine M; Place M; Liu L; Pier A; Krause DJ; Xie D; Zhang Y; Landick R; Gasch AP; Hittinger CT; Sato TK
    Metab Eng; 2021 Nov; 68():119-130. PubMed ID: 34592433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immunomodulatory Effects of the Mycosporine-Like Amino Acids Shinorine and Porphyra-334.
    Becker K; Hartmann A; Ganzera M; Fuchs D; Gostner JM
    Mar Drugs; 2016 Jun; 14(6):. PubMed ID: 27338421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase.
    Walfridsson M; Hallborn J; Penttilä M; Keränen S; Hahn-Hägerdal B
    Appl Environ Microbiol; 1995 Dec; 61(12):4184-90. PubMed ID: 8534086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.
    Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S
    Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved Xylose Metabolism by a
    Nijland JG; Shin HY; Boender LGM; de Waal PP; Klaassen P; Driessen AJM
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363963
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.
    Turner TL; Zhang GC; Kim SR; Subramaniam V; Steffen D; Skory CD; Jang JY; Yu BJ; Jin YS
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):8023-33. PubMed ID: 26043971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae.
    Shen MH; Song H; Li BZ; Yuan YJ
    Biotechnol Lett; 2015 May; 37(5):1031-6. PubMed ID: 25548118
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation.
    Hector RE; Mertens JA; Bowman MJ; Nichols NN; Cotta MA; Hughes SR
    Yeast; 2011 Sep; 28(9):645-60. PubMed ID: 21809385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2.
    Hohmann S; Winderickx J; de Winde JH; Valckx D; Cobbaert P; Luyten K; de Meirsman C; Ramos J; Thevelein JM
    Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():703-714. PubMed ID: 10217505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterologous Production of Cyanobacterial Mycosporine-Like Amino Acids Mycosporine-Ornithine and Mycosporine-Lysine in Escherichia coli.
    Katoch M; Mazmouz R; Chau R; Pearson LA; Pickford R; Neilan BA
    Appl Environ Microbiol; 2016 Oct; 82(20):6167-6173. PubMed ID: 27520810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mixed and diverse metabolic and gene-expression regulation of the glycolytic and fermentative pathways in response to a HXK2 deletion in Saccharomyces cerevisiae.
    Rossell S; Lindenbergh A; van der Weijden CC; Kruckeberg AL; van Eunen K; Westerhoff HV; Bakker BM
    FEMS Yeast Res; 2008 Feb; 8(1):155-64. PubMed ID: 17662056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria.
    Balskus EP; Walsh CT
    Science; 2010 Sep; 329(5999):1653-6. PubMed ID: 20813918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.