These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34612608)

  • 1. Crosslinking Trends in Multicomponent Hydrogels for Biomedical Applications.
    Dodda JM; Azar MG; Sadiku R
    Macromol Biosci; 2021 Dec; 21(12):e2100232. PubMed ID: 34612608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials.
    Farokhi M; Aleemardani M; Solouk A; Mirzadeh H; Teuschl AH; Redl H
    Biomed Mater; 2021 Feb; 16(2):022004. PubMed ID: 33594992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomolecules based hydrogels and their potential biomedical applications: A comprehensive review.
    Ijaz F; Tahir HM; Ali S; Ali A; Khan HA; Muzamil A; Manzoor HH; Qayyum KA
    Int J Biol Macromol; 2023 Dec; 253(Pt 6):127362. PubMed ID: 37827396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Formation Mechanism of Hydrogels.
    Lu L; Yuan S; Wang J; Shen Y; Deng S; Xie L; Yang Q
    Curr Stem Cell Res Ther; 2018; 13(7):490-496. PubMed ID: 28606044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opportunities for multicomponent hybrid hydrogels in biomedical applications.
    Lau HK; Kiick KL
    Biomacromolecules; 2015 Jan; 16(1):28-42. PubMed ID: 25426888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injectable hydrogel systems crosslinked by horseradish peroxidase.
    Lee F; Bae KH; Kurisawa M
    Biomed Mater; 2015 Dec; 11(1):014101. PubMed ID: 26694014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Horseradish peroxidase-catalysed in situ-forming hydrogels for tissue-engineering applications.
    Bae JW; Choi JH; Lee Y; Park KD
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1225-32. PubMed ID: 24916126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Horseradish peroxidase-catalyzed hydrogelation for biomedical applications.
    Khanmohammadi M; Dastjerdi MB; Ai A; Ahmadi A; Godarzi A; Rahimi A; Ai J
    Biomater Sci; 2018 May; 6(6):1286-1298. PubMed ID: 29714366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High strength pure chitosan hydrogels via double crosslinking strategy.
    Huang L; Chu Y; Zhang L; Liu X; Hao W; Chen Y; Dai J
    Biomed Mater; 2021 Jun; 16(4):. PubMed ID: 34038891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing of biocompatible and biodegradable chitosan based crosslinked hydrogel for in vitro release of encapsulated povidone-iodine: A clinical translation.
    Gull N; Khan SM; Khalid S; Zia S; Islam A; Sabir A; Sultan M; Hussain F; Khan RU; Butt MTZ
    Int J Biol Macromol; 2020 Dec; 164():4370-4380. PubMed ID: 32926902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical gelling of hydrogels-based biological macromolecules for tissue engineering: Photo- and enzymatic-crosslinking methods.
    Nezhad-Mokhtari P; Ghorbani M; Roshangar L; Soleimani Rad J
    Int J Biol Macromol; 2019 Oct; 139():760-772. PubMed ID: 31400425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triethyl orthoformate mediated a novel crosslinking method for the preparation of hydrogels for tissue engineering applications: characterization and in vitro cytocompatibility analysis.
    Yar M; Shahzad S; Siddiqi SA; Mahmood N; Rauf A; Anwar MS; Chaudhry AA; Rehman Iu
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():154-64. PubMed ID: 26249576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil.
    Ranjha NM; Ayub G; Naseem S; Ansari MT
    J Mater Sci Mater Med; 2010 Oct; 21(10):2805-16. PubMed ID: 20686825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Robust, Self-Healable, and Shape Memory Supramolecular Hydrogel by Multiple Hydrogen Bonding Interactions.
    Feng Z; Zuo H; Gao W; Ning N; Tian M; Zhang L
    Macromol Rapid Commun; 2018 Oct; 39(20):e1800138. PubMed ID: 29722916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ gelling hydrogels for pharmaceutical and biomedical applications.
    Van Tomme SR; Storm G; Hennink WE
    Int J Pharm; 2008 May; 355(1-2):1-18. PubMed ID: 18343058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent and ionic co-cross-linking--an original way to prepare chitosan-gelatin hydrogels for biomedical applications.
    Jătariu Cadinoiu AN; Popa M; Curteanu S; Peptu CA
    J Biomed Mater Res A; 2011 Sep; 98(3):342-50. PubMed ID: 21626665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Functionalization of Polysaccharides-Towards Biocompatible Hydrogels for Biomedical Applications.
    Kirschning A; Dibbert N; Dräger G
    Chemistry; 2018 Jan; 24(6):1231-1240. PubMed ID: 28804933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignin-based hydrogels: A review of preparation, properties, and application.
    Meng Y; Lu J; Cheng Y; Li Q; Wang H
    Int J Biol Macromol; 2019 Aug; 135():1006-1019. PubMed ID: 31154040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity.
    Mironi-Harpaz I; Wang DY; Venkatraman S; Seliktar D
    Acta Biomater; 2012 May; 8(5):1838-48. PubMed ID: 22285429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Polysaccharide-Based Physical Hydrogels and Their Potential Applications for Biomedical and Wastewater Treatment.
    Hu X; Zhang L; Yan L; Tang L
    Macromol Biosci; 2022 Sep; 22(9):e2200153. PubMed ID: 35584011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.