These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 34612653)
1. Self-Powered High-Responsivity Photodetectors Enhanced by the Pyro-Phototronic Effect Based on a BaTiO Zhang Y; Chen J; Zhu L; Wang ZL Nano Lett; 2021 Oct; 21(20):8808-8816. PubMed ID: 34612653 [TBL] [Abstract][Full Text] [Related]
2. Pyro-Phototronic Effect-Enhanced Photocurrent of a Self-Powered Photodetector Based on ZnO Nanofiber Arrays/BaTiO Yu P; Wang W; Zheng T; Wan X; Jiang Y ACS Appl Mater Interfaces; 2023 Oct; 15(39):46031-46040. PubMed ID: 37733942 [TBL] [Abstract][Full Text] [Related]
3. A Self-Powered Photodetector Based on MAPbI Yang Z; Wang H; Guo L; Zhou Q; Gu Y; Li F; Qiao S; Pan C; Wang S Small; 2021 Aug; 17(32):e2101572. PubMed ID: 34212480 [TBL] [Abstract][Full Text] [Related]
4. Self-powered ultraviolet photodetector based on an n-ZnO:Ga microwire/p-Si heterojunction with the performance enhanced by a pyro-phototronic effect. Dai R; Liu Y; Wu J; Wan P; Zhu X; Kan C; Jiang M Opt Express; 2021 Sep; 29(19):30244-30258. PubMed ID: 34614751 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Performance of a Self-Powered Au/WSe Wang D; Ling S; Hou P ACS Appl Mater Interfaces; 2024 Sep; 16(36):48576-48584. PubMed ID: 39207265 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Performance of a Self-Powered Organic/Inorganic Photodetector by Pyro-Phototronic and Piezo-Phototronic Effects. Peng W; Wang X; Yu R; Dai Y; Zou H; Wang AC; He Y; Wang ZL Adv Mater; 2017 Jun; 29(23):. PubMed ID: 28397304 [TBL] [Abstract][Full Text] [Related]
7. Ferro-Pyro-Phototronic Effect in Monocrystalline 2D Ferroelectric Perovskite for High-Sensitive, Self-Powered, and Stable Ultraviolet Photodetector. Guo L; Liu X; Gao L; Wang X; Zhao L; Zhang W; Wang S; Pan C; Yang Z ACS Nano; 2022 Jan; 16(1):1280-1290. PubMed ID: 34995467 [TBL] [Abstract][Full Text] [Related]
9. Doping controlled pyro-phototronic effect in self-powered zinc oxide photodetector for enhancement of photoresponse. Deka Boruah B; Naidu Majji S; Nandi S; Misra A Nanoscale; 2018 Feb; 10(7):3451-3459. PubMed ID: 29393951 [TBL] [Abstract][Full Text] [Related]
10. Patterned 2D Ferroelectric Perovskite Single-Crystal Arrays for Self-Powered UV Photodetector Boosted by Combining Ferro-Pyro-Phototronic and Piezo-Phototronic Effects. Guo L; Liu X; Cong R; Gao L; Zhang K; Zhao L; Wang X; Wang RN; Pan C; Yang Z Nano Lett; 2022 Oct; 22(20):8241-8249. PubMed ID: 36215318 [TBL] [Abstract][Full Text] [Related]
11. Pyro-Phototronic Effect Enhanced Pyramid Structured p-Si/n-ZnO Nanowires Heterojunction Photodetector. Xue M; Peng W; Tang X; Cai Y; Li F; He Y ACS Appl Mater Interfaces; 2023 Jan; 15(3):4677-4689. PubMed ID: 36625530 [TBL] [Abstract][Full Text] [Related]
12. Enhancing Photocurrent of Radially Polarized Ferroelectric BaTiO Zhao K; Ouyang B; Yang Y iScience; 2018 May; 3():208-216. PubMed ID: 30428320 [TBL] [Abstract][Full Text] [Related]
13. Self-Powered Si/CdS Flexible Photodetector with Broadband Response from 325 to 1550 nm Based on Pyro-phototronic Effect: An Approach for Photosensing below Bandgap Energy. Dai Y; Wang X; Peng W; Xu C; Wu C; Dong K; Liu R; Wang ZL Adv Mater; 2018 Mar; 30(9):. PubMed ID: 29334148 [TBL] [Abstract][Full Text] [Related]
14. A Self-Powered UV Photodetector With Ultrahigh Responsivity Based on 2D Perovskite Ferroelectric Films With Mixed Spacer Cations. Guo L; Qi Y; Wu Z; Yang X; Yan G; Cong R; Zhao L; Zhang W; Wang S; Pan C; Yang Z Adv Mater; 2023 Nov; 35(47):e2301705. PubMed ID: 37683840 [TBL] [Abstract][Full Text] [Related]
15. Disentangling the Role of the SnO Layer on the Pyro-Phototronic Effect in ZnO-Based Self-Powered Photodetectors. Vieira EMF; Silva JPB; Gwozdz K; Kaim A; Gomes NM; Chahboun A; Gomes MJM; Correia JH Small; 2023 Aug; 19(32):e2300607. PubMed ID: 37086105 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Photocurrent in BiFeO Qi J; Ma N; Ma X; Adelung R; Yang Y ACS Appl Mater Interfaces; 2018 Apr; 10(16):13712-13719. PubMed ID: 29619823 [TBL] [Abstract][Full Text] [Related]
17. Pyro-Phototronic Effect for Advanced Photodetectors and Novel Light Energy Harvesting. Li F; Peng W; Wang Y; Xue M; He Y Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110922 [TBL] [Abstract][Full Text] [Related]
18. Pyro-Phototronic Effect in All-Inorganic Two-Dimensional Ruddlesden-Popper Ferroelectric Perovskite Thin-films and Photodetection. Dan S; Chakraborty R; Pal AJ ACS Appl Mater Interfaces; 2023 Sep; 15(38):45083-45094. PubMed ID: 37698844 [TBL] [Abstract][Full Text] [Related]
19. Enhanced P3HT/ZnO Nanowire Array Solar Cells by Pyro-phototronic Effect. Zhang K; Wang ZL; Yang Y ACS Nano; 2016 Nov; 10(11):10331-10338. PubMed ID: 27794597 [TBL] [Abstract][Full Text] [Related]
20. Self-Powered MAPbI Zhang T; Zhang G; Wang Q; Guo S; Zhang Z; Liu J; Wang S; Qiao S J Phys Chem Lett; 2024 Mar; 15(9):2511-2518. PubMed ID: 38411558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]