These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34612871)

  • 1. Broadband chromatic dispersion in fiber-coupled optical interferometry.
    Allured R; Ashcom JB
    Appl Opt; 2021 Aug; 60(22):6371-6384. PubMed ID: 34612871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry.
    Lee JY; Kim DY
    Opt Express; 2006 Nov; 14(24):11608-15. PubMed ID: 19529580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrum-sliced Fourier-domain low-coherence interferometry for measuring the chromatic dispersion of an optical fiber.
    Lee JY; Kim DY
    Appl Opt; 2007 Oct; 46(29):7289-96. PubMed ID: 17932543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and accurate chromatic dispersion measurement of fiber using asymmetric Sagnac interferometer.
    Zong L; Luo F; Cui S; Cao X
    Opt Lett; 2011 Mar; 36(5):660-2. PubMed ID: 21368940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A distributed fiber vibration sensor utilizing dispersion induced walk-off effect in a unidirectional Mach-Zehnder interferometer.
    Chen Q; Jin C; Bao Y; Li Z; Li J; Lu C; Yang L; Li G
    Opt Express; 2014 Feb; 22(3):2167-73. PubMed ID: 24663508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of higher order chromatic dispersion in a photonic bandgap fiber: comparative study of spectral interferometric methods.
    Grósz T; Kovács AP; Kiss M; Szipőcs R
    Appl Opt; 2014 Mar; 53(9):1929-37. PubMed ID: 24663472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultracompact in-line broadband Mach-Zehnder interferometer using a composite leaky hollow-optical-fiber waveguide.
    Jung Y; Lee S; Lee BH; Oh K
    Opt Lett; 2008 Dec; 33(24):2934-6. PubMed ID: 19079497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of specialty fiber biosensors based on interferometer configuration.
    Li X; Chen N; Zhou X; Gong P; Wang S; Zhang Y; Zhao Y
    J Biophotonics; 2021 Jun; 14(6):e202100068. PubMed ID: 33797865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Core-Offset Mach Zehnder Interferometer Based on A Non-Zero Dispersion-Shifted Fiber and Its Torsion Sensing Application.
    Huerta-Mascotte E; Sierra-Hernandez JM; Mata-Chavez RI; Jauregui-Vazquez D; Castillo-Guzman A; Estudillo-Ayala JM; Guzman-Chavez AD; Rojas-Laguna R
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27294930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel super-high extinction ratio comb-filter based on cascaded Mach-Zehnder Gires-Tournois interferometers with dispersion compensation.
    Zhang Y; Huang W; Wang X; Xu H; Cai Z
    Opt Express; 2009 Aug; 17(16):13685-99. PubMed ID: 19654777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersion characterization of two orthogonal modes in a birefringence tellurite microstructured optical fiber.
    Deng D; Sega D; Cheng T; Gao W; Xue X; Suzuki T; Ohishi Y
    Opt Express; 2014 Oct; 22(20):23920-7. PubMed ID: 25321969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersion mismatch correction for evident chromatic anomaly in low coherence interferometry.
    Iyer RR; Yang L; Sorrells JE; Chaney EJ; Spillman DR; Boppart SA
    APL Photonics; 2024 Jul; 9(7):076114. PubMed ID: 39072189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alignment-free dispersion measurement with interfering biphotons.
    Riazi A; Zhu EY; Chen C; Gladyshev AV; Kazansky PG; Qian L
    Opt Lett; 2019 Mar; 44(6):1484-1487. PubMed ID: 30874682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliable chromatic dispersion measurement method for installed optical fibers.
    Zong L
    Appl Opt; 2015 Sep; 54(26):7973-7. PubMed ID: 26368972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Fiber Based Mach-Zehnder Interferometer for APES Detection.
    Deng H; Chen X; Huang Z; Kang S; Zhang W; Li H; Shu F; Lang T; Zhao C; Shen C
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast and Doppler-free femtosecondoptical ranging based on dispersivefrequency-modulated interferometry.
    Xia H; Zhang C
    Opt Express; 2010 Mar; 18(5):4118-29. PubMed ID: 20389425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive refractive index sensor based on a Mach-Zehnder interferometer created in twin-core fiber.
    Li Z; Liao C; Wang Y; Dong X; Liu S; Yang K; Wang Q; Zhou J
    Opt Lett; 2014 Sep; 39(17):4982-5. PubMed ID: 25166054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined temperature and strain measurement with a dispersive optical fiber Fourier-transform spectrometer.
    Flavin DA; McBride R; Jones JD; Burnett JG; Greenaway AH
    Opt Lett; 1994 Dec; 19(24):2167-9. PubMed ID: 19855775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic dispersion compensation using full optical-field reconstruction in 10Gbit/s OOK based systems.
    Zhao J; McCarthy ME; Ellis AD
    Opt Express; 2008 Sep; 16(20):15353-65. PubMed ID: 18825171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband chromatic dispersion measurements in higher-order modes selectively excited in optical fibers using a spatial light modulator.
    Zolnacz K; Szatkowski M; Masajada J; Urbanczyk W
    Opt Express; 2021 Apr; 29(9):13256-13268. PubMed ID: 33985064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.