These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34612890)

  • 61. Quantitative phase imaging of cells in a flow cytometry arrangement utilizing Michelson interferometer-based off-axis digital holographic microscopy.
    Min J; Yao B; Trendafilova V; Ketelhut S; Kastl L; Greve B; Kemper B
    J Biophotonics; 2019 Sep; 12(9):e201900085. PubMed ID: 31169960
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Holographic memory system based on projection recording of computer-generated 1D Fourier holograms.
    Betin AY; Bobrinev VI; Donchenko SS; Odinokov SB; Evtikhiev NN; Starikov RS; Starikov SN; Zlokazov EY
    Appl Opt; 2014 Oct; 53(28):6591-7. PubMed ID: 25322249
    [TBL] [Abstract][Full Text] [Related]  

  • 63. All-optically controlled beam splitting through asymmetric polarization-based holography.
    Lyu Z; Wang C; Pan Y; Xia R; Chen T; Sun L
    Opt Lett; 2019 Apr; 44(8):2129-2132. PubMed ID: 30985828
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Single beam two-views holographic particle image velocimetry.
    Sheng J; Malkiel E; Katz J
    Appl Opt; 2003 Jan; 42(2):235-50. PubMed ID: 12546503
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Interferenceless and motionless method for recording digital holograms of coherently illuminated 3D objects by coded aperture correlation holography system.
    Hai N; Rosen J
    Opt Express; 2019 Aug; 27(17):24324-24339. PubMed ID: 31510323
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Visual inspection of 3-D surface and refractive-index profiles of microscopic lenses using a single-arm off-axis holographic interferometer.
    Kim BM; Kim ES
    Opt Express; 2016 May; 24(10):10326-44. PubMed ID: 27409857
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Two-wavelength holographic interferometry for transparent media using a diffraction grating.
    Weigl F
    Appl Opt; 1971 May; 10(5):1083-6. PubMed ID: 20094606
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Single capture bright field and off-axis digital holographic microscopy.
    Picazo-Bueno JÁ; Barroso Á; Ketelhut S; Schnekenburger J; Micó V; Kemper B
    Opt Lett; 2023 Feb; 48(4):876-879. PubMed ID: 36790964
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Estimation of multiple phases from a single fringe pattern in digital holographic interferometry.
    Rajshekhar G; Gorthi SS; Rastogi P
    Opt Express; 2012 Jan; 20(2):1281-91. PubMed ID: 22274473
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Grating-based in-line geometric-phase-shifting incoherent digital holographic system toward 3D videography.
    Nobukawa T; Katano Y; Goto M; Muroi T; Hagiwara K; Ishii N
    Opt Express; 2022 Jul; 30(15):27825-27840. PubMed ID: 36236944
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Iterative signal separation based multiple phase estimation in digital holographic interferometry.
    Kulkarni R; Rastogi P
    Opt Express; 2015 Oct; 23(20):26842-52. PubMed ID: 26480195
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Microlens characterization by digital holographic microscopy with physical spherical phase compensation.
    Weijuan Q; Choo CO; Yingjie Y; Asundi A
    Appl Opt; 2010 Nov; 49(33):6448-54. PubMed ID: 21102670
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Digital holographic interferometer using simultaneously three lasers and a single monochrome sensor for 3D displacement measurements.
    Saucedo-A T; De la Torre-Ibarra MH; Santoyo FM; Moreno I
    Opt Express; 2010 Sep; 18(19):19867-75. PubMed ID: 20940878
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Registration of digital holograms by means of resonant phase-shifting.
    Kalenkov SG; Kalenkov GS
    J Opt Soc Am A Opt Image Sci Vis; 2021 Feb; 38(2):A7-A10. PubMed ID: 33690522
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Stereophotogrammetric 3D shape measurement by holographic methods using structured speckle illumination combined with interferometry.
    Babovsky H; Grosse M; Buehl J; Kiessling A; Kowarschik R
    Opt Lett; 2011 Dec; 36(23):4512-4. PubMed ID: 22139226
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Robust digital holography design with monitoring setup and reference tilt error elimination.
    Xu X; Zhang Z; Wang Z; Wang J; Zhan K; Jia Y; Jiao Z
    Appl Opt; 2018 Mar; 57(7):B205-B211. PubMed ID: 29522022
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Very high speed cw digital holographic interferometry.
    Pérez-López C; De la Torre-Ibarra MH; Mendoza Santoyo F
    Opt Express; 2006 Oct; 14(21):9709-15. PubMed ID: 19529361
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Holographic system for automatic surface mapping.
    Gara AD; Majkowski RF; Stapleton TT
    Appl Opt; 1973 Sep; 12(9):2172-9. PubMed ID: 20125685
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Resolution improvement in digital holography by angular and polarization multiplexing.
    Yuan C; Situ G; Pedrini G; Ma J; Osten W
    Appl Opt; 2011 Mar; 50(7):B6-11. PubMed ID: 21364714
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Spatial phase-shift dual-beam speckle interferometry.
    Gao X; Yang L; Wang Y; Zhang B; Dan X; Li J; Wu S
    Appl Opt; 2018 Jan; 57(3):414-419. PubMed ID: 29400790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.