These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34612957)

  • 21. Twin mirrors for laser interferometric gravitational-wave detectors.
    Sassolas B; Benoît Q; Flaminio R; Forest D; Franc J; Galimberti M; Lacoudre A; Michel C; Montorio JL; Morgado N; Pinard L
    Appl Opt; 2011 May; 50(13):1894-9. PubMed ID: 21532671
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low Mechanical Loss TiO_{2}:GeO_{2} Coatings for Reduced Thermal Noise in Gravitational Wave Interferometers.
    Vajente G; Yang L; Davenport A; Fazio M; Ananyeva A; Zhang L; Billingsley G; Prasai K; Markosyan A; Bassiri R; Fejer MM; Chicoine M; Schiettekatte F; Menoni CS
    Phys Rev Lett; 2021 Aug; 127(7):071101. PubMed ID: 34459624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Higher-order Laguerre-Gauss mode generation and interferometry for gravitational wave detectors.
    Granata M; Buy C; Ward R; Barsuglia M
    Phys Rev Lett; 2010 Dec; 105(23):231102. PubMed ID: 21231445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optically trapped mirror for reaching the standard quantum limit.
    Matsumoto N; Michimura Y; Aso Y; Tsubono K
    Opt Express; 2014 Jun; 22(11):12915-23. PubMed ID: 24921489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical design of the proposed Australian International Gravitational Observatory.
    Barriga P; Arain MA; Mueller G; Zhao C; Blair DG
    Opt Express; 2009 Feb; 17(4):2149-65. PubMed ID: 19219119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ correction of mirror surface to reduce round-trip losses in Fabry-Perot cavities.
    Vajente G
    Appl Opt; 2014 Mar; 53(7):1459-65. PubMed ID: 24663376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Invited article: CO2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions.
    Heptonstall A; Barton MA; Bell A; Cagnoli G; Cantley CA; Crooks DR; Cumming A; Grant A; Hammond GD; Harry GM; Hough J; Jones R; Kelley D; Kumar R; Martin IW; Robertson NA; Rowan S; Strain KA; Tokmakov K; van Veggel M
    Rev Sci Instrum; 2011 Jan; 82(1):011301. PubMed ID: 21280809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Radiation pressure and stability of interferometric gravitational-wave detectors.
    Chickarmane V; Dhurandhar SV; Barillet R; Hello P; Vinet JY
    Appl Opt; 1998 May; 37(15):3236-45. PubMed ID: 18273275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analytical model for ring heater thermal compensation in the Advanced Laser Interferometer Gravitational-wave Observatory.
    Ramette J; Kasprzack M; Brooks A; Blair C; Wang H; Heintze M
    Appl Opt; 2016 Apr; 55(10):2619-25. PubMed ID: 27139664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interferometer techniques for gravitational-wave detection.
    Bond C; Brown D; Freise A; Strain KA
    Living Rev Relativ; 2016; 19(1):3. PubMed ID: 28260967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calculation method for light scattering caused by multilayer coated mirrors in gravitational wave detectors.
    Zeidler S; Akutsu T; Torii Y; Hirose E; Aso Y; Flaminio R
    Opt Express; 2017 Mar; 25(5):4741-4760. PubMed ID: 28380744
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Angular control of optical cavities in a radiation-pressure-dominated regime: the Enhanced LIGO case.
    Dooley KL; Barsotti L; Adhikari RX; Evans M; Fricke TT; Fritschel P; Frolov V; Kawabe K; Smith-Lefebvre N
    J Opt Soc Am A Opt Image Sci Vis; 2013 Dec; 30(12):2618-26. PubMed ID: 24323024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advanced technologies for future ground-based, laser-interferometric gravitational wave detectors.
    Hammond G; Hild S; Pitkin M
    J Mod Opt; 2014 Dec; 61(sup1):S10-S45. PubMed ID: 25705087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alignment of an interferometric gravitational wave detector.
    Fritschel P; Mavalvala N; Shoemaker D; Sigg D; Zucker M; González G
    Appl Opt; 1998 Oct; 37(28):6734-47. PubMed ID: 18301487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interferometric antenna response for gravitational-wave detection.
    Fabbro RD; Montelatici V
    Appl Opt; 1995 Jul; 34(21):4380-96. PubMed ID: 21052273
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Narrowing the filter-cavity bandwidth in gravitational-wave detectors via optomechanical interaction.
    Ma Y; Danilishin SL; Zhao C; Miao H; Korth WZ; Chen Y; Ward RL; Blair DG
    Phys Rev Lett; 2014 Oct; 113(15):151102. PubMed ID: 25375698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of mirror coatings for gravitational-wave detectors.
    Steinlechner J
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Observation of generalized optomechanical coupling and cooling on cavity resonance.
    Sawadsky A; Kaufer H; Nia RM; Tarabrin SP; Khalili FY; Hammerer K; Schnabel R
    Phys Rev Lett; 2015 Jan; 114(4):043601. PubMed ID: 25679890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Audio-Band Frequency-Dependent Squeezing for Gravitational-Wave Detectors.
    Oelker E; Isogai T; Miller J; Tse M; Barsotti L; Mavalvala N; Evans M
    Phys Rev Lett; 2016 Jan; 116(4):041102. PubMed ID: 26871318
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Apparatus for dimensional characterization of fused silica fibers for the suspensions of advanced gravitational wave detectors.
    Cumming A; Jones R; Barton M; Cagnoli G; Cantley CA; Crooks DR; Hammond GD; Heptonstall A; Hough J; Rowan S; Strain KA
    Rev Sci Instrum; 2011 Apr; 82(4):044502. PubMed ID: 21529026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.