These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 34612979)

  • 1. Performance model of depth from defocus with an unconventional camera.
    Trouvé-Peloux P; Champagnat F; Le Besnerais G; Druart G; Idier J
    J Opt Soc Am A Opt Image Sci Vis; 2021 Oct; 38(10):1489-1500. PubMed ID: 34612979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive depth estimation using chromatic aberration and a depth from defocus approach.
    Trouvé P; Champagnat F; Le Besnerais G; Sabater J; Avignon T; Idier J
    Appl Opt; 2013 Oct; 52(29):7152-64. PubMed ID: 24217733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning scene and blur model for active chromatic depth from defocus.
    Buat B; Trouvé-Peloux P; Champagnat F; Le Besnerais G
    Appl Opt; 2021 Nov; 60(31):9966-9974. PubMed ID: 34807187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compact and fast depth sensor based on a liquid lens using chromatic aberration to improve accuracy.
    Jung GS; Won YH
    Opt Express; 2021 May; 29(10):15786-15801. PubMed ID: 33985273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turning a conventional camera into a 3D camera with an add-on.
    Trouvé-Peloux P; Sabater J; Bernard-Brunel A; Champagnat F; Le Besnerais G; Avignon T
    Appl Opt; 2018 Apr; 57(10):2553-2563. PubMed ID: 29714240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depth estimation using spectrally varying defocus blur.
    Ishihara S; Sulc A; Sato I
    J Opt Soc Am A Opt Image Sci Vis; 2021 Aug; 38(8):1140-1149. PubMed ID: 34613308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple method of acquiring high-quality light fields based on the chromatic aberration of only one defocused image pair.
    Jung GS; Won YH
    Opt Express; 2021 Oct; 29(22):36417-36429. PubMed ID: 34809052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of small aperture implants providing increased depth of focus in pseudophakic eyes.
    Eppig T; Spira C; Seitz B; Szentmáry N; Langenbucher A
    Z Med Phys; 2016 Jun; 26(2):159-67. PubMed ID: 27017516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Camera processing with chromatic aberration.
    Korneliussen JT; Hirakawa K
    IEEE Trans Image Process; 2014 Oct; 23(10):4539-52. PubMed ID: 25163060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual focus and depth estimation from defocused video sequences.
    Yang J; Schonfeld D
    IEEE Trans Image Process; 2010 Mar; 19(3):668-79. PubMed ID: 19933002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Miniaturized 3D Depth Sensing-Based Smartphone Light Field Camera.
    Kim HM; Kim MS; Lee GJ; Jang HJ; Song YM
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32283826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Unified Approach for Registration and Depth in Depth from Defocus.
    Ben-Ari R
    IEEE Trans Pattern Anal Mach Intell; 2014 Jun; 36(6):1041-55. PubMed ID: 26353270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depth from defocus measurement method based on liquid crystal lens.
    Ye M; Chen X; Li Q; Zeng J; Yu S
    Opt Express; 2018 Oct; 26(22):28413-28420. PubMed ID: 30470013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring Chromatic Aberration and Defocus Blur for Relative Depth Estimation From Monocular Hyperspectral Image.
    Zia A; Zhou J; Gao Y
    IEEE Trans Image Process; 2021; 30():4357-4370. PubMed ID: 33848246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate single image depth detection using multiple rotating point spread functions.
    Hartlieb S; Schober C; Haist T; Reichelt S
    Opt Express; 2022 Jun; 30(13):23035-23049. PubMed ID: 36224992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of crossed cylinder lens in photographic lens evaluation.
    Howland B
    Appl Opt; 1968 Aug; 7(8):1587-600. PubMed ID: 20068844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical performance model for single image depth from defocus.
    Trouvé-Peloux P; Champagnat F; Le Besnerais G; Idier J
    J Opt Soc Am A Opt Image Sci Vis; 2014 Dec; 31(12):2650-62. PubMed ID: 25606754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active depth estimation from defocus using a camera array.
    Tao T; Chen Q; Feng S; Hu Y; Zuo C
    Appl Opt; 2018 Jun; 57(18):4960-4967. PubMed ID: 30117952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depth-based defocus map estimation using off-axis apertures.
    Lee E; Chae E; Cheong H; Jeon S; Paik J
    Opt Express; 2015 Aug; 23(17):21958-71. PubMed ID: 26368171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale depth reconstruction from defocus: within an optical diffraction model.
    Wei Y; Wu C; Dong Z
    Opt Express; 2014 Oct; 22(21):25481-93. PubMed ID: 25401580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.