These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34613064)

  • 1. Uniformity improvement on received optical power for an indoor visible light communication system with an angle diversity receiver.
    Chi S; Wang P; Niu S; Che H; Wang Z; Wu Y
    Appl Opt; 2021 Sep; 60(26):8031-8037. PubMed ID: 34613064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized design of the light source for an indoor visible light communication system based on an improved bat algorithm.
    Huang L; Wang P; Wang J; Chi S; Niu S; Nan X; Che H
    Appl Opt; 2020 Dec; 59(34):10638-10644. PubMed ID: 33361880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Average signal-to-noise ratio maximization for an intelligent reflecting surface and angle diversity receiver jointly assisted indoor visible light communication system.
    Yang T; Wang P; Li G; Wang H; Li S; Shi H; He H; Shi F; Chi S
    Appl Opt; 2022 Dec; 61(35):10390-10399. PubMed ID: 36607097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel and Adaptive Angle Diversity-Based Receiver for 6G Underground Mining VLC Systems.
    Palacios Játiva P; Sánchez I; Soto I; Azurdia-Meza CA; Zabala-Blanco D; Ijaz M; Dehghan Firoozabadi A; Plets D
    Entropy (Basel); 2022 Oct; 24(11):. PubMed ID: 36359600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of LED transmitters' radiation pattern on received power distribution in a generalized indoor VLC system.
    Wang Y; Chen M; Wang JY; Shi J; Yang Z; Pan Y; Guan R
    Opt Express; 2017 Sep; 25(19):22805-22819. PubMed ID: 29041587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indoor MIMO-VLC Using Angle Diversity Transmitters.
    Qin B; Wen W; Liu M; Zhang Y; Chen C
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of location, power allocation and orientation for lighting lamps in a visible light communication system using the firefly algorithm.
    Wei Z; Hu H; Huang H
    Opt Express; 2021 Mar; 29(6):8796-8808. PubMed ID: 33820321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Channel modelling for indoor visible light communications.
    Miramirkhani F; Uysal M
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190187. PubMed ID: 32114913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy-Efficient Unmanned Aerial Vehicle-Aided Visible Light Communication with an Angle Diversity Transmitter for Joint Emergency Illumination and Communication.
    Huang Q; Wen W; Liu M; Du P; Chen C
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimum Design of a Composite Optical Receiver by Taguchi and Fuzzy Logic Methods.
    Wang N; Peng X; Kong L
    Micromachines (Basel); 2021 Nov; 12(12):. PubMed ID: 34945285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint power allocation and orientation for uniform illuminance in indoor visible light communication.
    Le Tran M; Kim S
    Opt Express; 2019 Sep; 27(20):28575-28587. PubMed ID: 31684607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symmetrical indoor visible light layout optimized by a modified grey wolf algorithm.
    Zuo Y; Liu B; Shao K
    Appl Opt; 2022 Jul; 61(20):6016-6022. PubMed ID: 36255847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of channel correlation and channel capacity for indoor MIMO visible light communication systems.
    Deng L; Fan Y
    Appl Opt; 2020 May; 59(15):4672-4684. PubMed ID: 32543576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indoor multiuser visible light communication systems using Hadamard-coded modulation.
    Lian J; Noshad M; Brandt-Pearce M
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190183. PubMed ID: 32114925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Power efficient LED placement algorithm for indoor visible light communication.
    Yang Y; Zhu Z; Guo C; Feng C
    Opt Express; 2020 Nov; 28(24):36389-36402. PubMed ID: 33379733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Visible Light Communication Transmitters Based on Switching-Mode dc-dc Converters.
    Rodríguez J; Lamar DG; Aller DG; Miaja PF; Sebastián J
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orientation-induced link-blocked receiver for MIMO visible light communication.
    Le Tran M; Kim S
    Opt Express; 2020 Apr; 28(8):12157-12173. PubMed ID: 32403715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust layout optimization for intelligent reflecting surfaces-based visible light communication systems.
    Liu C; Wang J; Feng L; Chen H; Xue Z
    Appl Opt; 2024 Mar; 63(8):2020-2029. PubMed ID: 38568643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Error performance of an L-PPM modulated ADR-based MIMO-VLC system with and without channel estimation error.
    Dixit V; Kumar A
    Appl Opt; 2023 Apr; 62(10):2501-2509. PubMed ID: 37132798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversed Three-Dimensional Visible Light Indoor Positioning Utilizing Annular Receivers with Multi-Photodiodes.
    Xu Y; Zhao J; Shi J; Chi N
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27509504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.